首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Abstract

The Nuclear Regulatory Commission (NRC) has recently completed an updated Spent Fuel Transportation Risk Assessment, NUREG-2125. This assessment considered the response of three certified casks to a range of impact accidents in order to determine whether or not they would lose their ability to contain the spent fuel or maintain effective shielding. The casks consisted of a lead shielded rail cask that can be transported either with or without an inner welded canister, an all-steel rail cask that is transported with an inner welded canister, and a DU shielded truck cask that is transported with directly loaded fuel. Finite element analyses were performed for impacts at speeds of 48, 97, 145 and 193 kilometres per hour into a rigid target. Impacts in end-on, side-on, and CG-over-corner orientations were analysed for each cask and impact speed. Calculations were performed to equate these impacts onto rigid targets with higher speed impacts onto the yielding targets that exist in the real world. These analyses indicated that a cask with an inner welded canister or a truck cask would not release radioactive material in any impact accident and that only very high-speed impacts onto hard rock targets could result in either release of material or significant degradation of shielding for rail casks without an inner canister. Impacts other than those onto flat unyielding targets were also considered. Analyses show that an impact that bypasses the impact limiters on the ends of the casks does not result in seal failure and neither does an impact by a locomotive also between the impact limiters.  相似文献   

2.
Domestic and international regulations for the transportation of radioactive materials strictly prescribe the design requirements for spent nuclear fuel (SNF) transport casks. According to the applicable codes, a transport cask must withstand a free-drop impact of 9 m onto an unyielding surface and a free-drop impact of 1 m onto a mild steel bar. However, the structural performance of a transport cask is not easy to evaluate precisely because the dynamic impact characteristics of the cask, which includes impact limiters to absorb the impact energy, are so complex.  相似文献   

3.
Abstract

A reference container of high capacity was analysed for loads beyond those it has to withstand during a 9 m IAEA drop test onto an unyielding target. In doing this a lid-end drop with shock absorber onto a real target was simulated. This is a possible accident for the rail transport of such casks. In this case the most critical components of the containment system are the primary lid bolts. The behaviour of the lid system and its sealing function were investigated with finite element (FE) analysis. To correlate the findings with a corresponding impact velocity onto real targets an analytical method was used. Despite the conservative assumptions made in this study a two-fold safety factor compared to the 9 m drop tests onto the unyielding target could be shown. The quantification of the additional safety the cask might provide requires further basic investigations on the behaviour of the real targets considered as well as the reduction of the conservatism included in the assumptions made up to now.  相似文献   

4.
Abstract

The present paper gives an overview of Japanese experimental studies of dual-purpose metal casks. The studies included: cask drop without impact limiters, drop of a heavy weight onto a cask due to building collapse, burial of a cask in debris from building collapse, tipping over of a cask during an earthquake, long-term containment of metal gaskets and transportability of casks after long-term storage. Most of the studies employed full-scale casks for the experiments.  相似文献   

5.
Abstract

The results are presented of 9 m (30 ft) drop simulations of three different types of transport casks, a monolithic ductile iron (DI) cask, a monolithic stainless steel (SS) cask, and a lead-shielded stainless steel (SS/Pb) sandwich cask. Each simulation involves two casks, one lying horizontally on an unyielding surface and the other positioned 9 m (30 ft) above the top surface of the lower cask. The top cask then free falls onto the lower cask, resulting in a more severe impact than the standard drop test required by the Nuclear Regulatory Commission (NRC). The drop tests were simulated using DYNA3D, a non-linear, explicit, three-dimensional finite element code for solid and structural mechanics. The results show that the monolithic casks are much stiffer than the stainless steel/lead sandwich cask. The largest difference was observed between the DI cask and the SS/Pb sandwich cask. Although the SS/Pb cask experiences considerable plastic deformation, none of them experiences failure by rupture, and they all perform within the requirements of Regulatory Guide 7.6, Revision 1 and IOCFR71. The better to compare the results, stress- and strain-based factors of safety were calculated for all of the simulations. These calculations show that the DI cask has a larger margin of safety than the SS/Pb sandwich cask, while the monolithic SS cask has a larger margin of safety than the monolithic DI cask. Finally, to address the concern over the brittleness of the DI casks, critical flaw sizes were calculated. All flaws required for crack propagation were larger than those detectable by current inspection techniques. Overall, the results of this study indicate that DI has sufficient strength, ductility, and fracture toughness to be considered as a structural material for transport casks.  相似文献   

6.
Abstract

Continental railway transport regulations (RID) do not exclude the transport of spent fuel casks in a regular train unit that also contains wagons with other hazardous materials. In the case of a train accident the release or reactions of those dangerous goods could potentially give significant accidental impacts on to the spent fuel casks. The assessment of fires from inflammable liquids and the explosion impacts from pressurised inflammable gases (like LPG) is well known from other studies which have usually revealed sufficient safety margins to the robust spent fuel cask designs. A new problem to be assessed is the potential impact from a detonation blast wave from explosives transported in the same train unit as a spent fuel cask. BAM is assessing this problem by developing a numerical model to calculate the effect of the dynamic pressure of a external shockwave on the cask construction. The calculation results show that the integrity of a robust monolithic cask with a screwed lid closure system is preserved after the effect of a 21 tonne (equivalent weight of TNT) explosive detonation in the regular transport configuration with a distance of 25 m between the centre of the explosion and the front of the cask.  相似文献   

7.
Abstract

The design assessment concerning the mechanical behaviour of transport and storage casks for radioactive material to fulfil nuclear safety criteria has to be based on two essential considerations: (1) Effective analysis of the stress–strain state of the cask components under both normal operational and test conditions including hypothetical accident scenarios with suitable accepted methods. (2) Economic estimation of the required properties and the structural state of the cask components with sufficient exactness. In an overview of the codes which are available at GNS/GNB for cask impact strength analyses (ANSYS, ADINA, VDI Codes), procedures and aspects of benchmarking and validation of calculation codes are described. The results of experimental full size cask drop test programs (CASTOR, POLLUX) and corresponding pre-test calculational analyses show the suitability of the codes used. The influence of dynamic effects on the mechanical properties of material (ductile cast iron, wood) has been investigated experimentally. By consideration of these dynamic values in strength analyses of casks at impact a good agreement between experimental and calculational results has been achieved.  相似文献   

8.
Abstract

Tests with different Type B casks confirm the existence of effects with stress peaks in cask components due to interactions between the cask and its contents. These effects can be caused by a delayed strike of the content onto surrounding cask components which cannot be excluded if the content is movable. Some results of the drop tests with two different Type B casks and with a model designed for the study of this problem are presented in the paper. Results of calculations performed with the ABAQUS computer code and by use of analytical methods to simulate the measured effects are discussed.  相似文献   

9.
Abstract

The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditionslike drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to thecollapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and — with respect to leak-tightness — relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected.  相似文献   

10.
Abstract

The use of spent fuel shipping and storage casks made of ductile cast iron (DCI) has been common practice for about 15 years when the development of such casks started in Germany where qualified foundries are able to produce these heavy section castings at the high quality level needed for this kind of application. To promote the discussion on safety against brittle failure a lot of research had been carried out in different countries. The two test programmes in Germany on casks with big artificial flaws under severe impact conditions is summarised in this paper. The first test object was a thick walled DCI ‘pipe’ (150 mm wall thickness) with dimensions equivalent to a 1:2.5 scale cask model. It was dropped with a 40 mm deep laser sharpended flaw from heights of up to 9 m onto rails. As a second test object a full scale CASTOR VHLW cask was used. This specimen had a flaw with a depth of 120 mm in a 260 mm thick wall. With increasing drop heights (up to 14 m) and stress intensity factors (up to material fracture toughness) this object was also dropped onto rails. For both cases the measured data (decelerations, crack opening displacement, strains, material properties) are presented. No brittle failure occurred, although in the 14 m drop of the CASTOR VHLW Cask the impact was 6.5 times higher than the impact measured in the mechanical test of the type B package design. The results demonstrate that DCI casks have significantly high safety margins even in the hypothetical case of an impact beyond type B package design requirements.  相似文献   

11.
12.
Abstract

For 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the spent nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. This paper focuses on the casks used to transport the fresh and used mix oxide (MOX) fuel. To transport the fresh MOX boiling water reactor and pressurised water reactors fuel, TN International has developed two designs of casks: the MX 6 and the MX 8. These casks are and have been used to transport MOX fuel for French, German, Swiss and in a near future Japanese nuclear power plants. A complete set of baskets have been developed to optimise the loading in terms of integrated dose and also of course capacity. Mixed oxide used fuel has now its dedicated cask: the TN 112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in September 2008 in the Electricité de France nuclear power plant of Saint-Laurent-des-Eaux. By its continuous involvement in the nuclear transportation field, TN International has been able to face the many challenges linked to the radioactive materials transportation especially talking of MOX fuel. TN International will also have to face the increasing demand linked to the nuclear renaissance.  相似文献   

13.
大容量钴源运输容器为运输工业用钴源而设计的专用设备。由于内容物放射性活度水平很高、衰变热很大,仅有少数国家具有设计能力,在国内的研制尚属首次。在对钴源运输容器的屏蔽设计研制过程中,突破之前的屏蔽设计技术束缚,采用MCAM程序与MCNP程序模拟计算钴源运输容器外的剂量率水平,并在设计过程中及时发现容器存在的设计缺陷,从而进行了设计改进,保证了容器满足国家标准要求的各项设计措施。目前这些设计措施已通过相关的试验验证。结果表明:针对大容量60 Co运输容器的关键技术制定的设计措施合理有效,充分保证了容器在经受国家标准中规定的正常运输条件和运输中事故条件下各项试验后容器屏蔽性能的完整性,确保钴源运输的安全。  相似文献   

14.
Abstract

Cylindrical fuel casks often have impact limiters surrounding the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and reducing peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following normal conditions of transport (NCT) and hypothetical accident conditions (HAC) impacts. Large casks are often certified by analysis only because of the cost associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 spent fuel containment cask found problems with the design of the impact limiter attachment system. Assumptions in the original safety analysis for packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.  相似文献   

15.
Abstract

The safety of spent fuel transport casks in severe accident conditions is always a matter of concern. This paper surveys German missile impact tests that have been carried out in the past to demonstrate that German cask designs for transport and interim storage are safe even under conditions of an aircraft crash impact. A fire test with a cask beside an exploding propane vessel and temperature calculations concerning prolonged fires also show that the casks have reasonably good safety margins in thermal accidents beyond regulatory fire test conditions.  相似文献   

16.
Abstract

In 2001 the Swiss nuclear utilities started to store spent fuel in dry metallic dual purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd, as the owner of the Mühleberg nuclear power plant, is involved in this process and has selected to store the spent fuel in a new high capacity dual purpose cask, the TN24BH. For the transport Cogema Logistics has developed a new medium size cask, the TN9/4, to replace the NTL9 cask, which has performed numerous shipments of BWR spent fuel in past decades. Licensed by the IAEA 1996, the TN9/4 is a 40 t transport cask, for seven BWR high burnup spent fuel assemblies. The spent fuel assemblies can be transferred to the ZWILAG hot cell in the TN24BH cask. These casks were first used in 2003. Ten TN9/4 shipments were made, and one TN24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN24BH high capacity dual purpose cask and the TN9/4 transport cask and describe in detail their characteristics and possibilities.  相似文献   

17.
Abstract

Sandia National Laboratories recently completed a cask drop test programme. The aims of the programme were (1) to demonstrate the applicability of a fracture mechanics-based methodology for ensuring cask integrity, and (2) to assess the viability of using a ferritic material for cask containment. The programme consisted of four phases: (i) materials characterisation; (ii) non-destructive examination of the cask; (iii) finite element analyses of the drop events; and (iv) a series of drop tests of a ductile iron cask. The first three phases of the programme provided information for fracture mechanics analyses and predictions for the drop test phase. The drop tests were nominally based upon the lAEA 9 m drop height hypothetical accident scenario, although one drop test was from 18 m. All tests were performed in the side drop orientation at a temperature of ?29°C. A circumferential, mid-axis flaw was introduced into the cask body for each drop test. Flaw depths ranged from 19 to 76 mm. Steel saddles were welded to the side wall of the cask to enhance the stresses imposed upon the cask in the region of the introduced flaw. The programme demonstrated the applicability of a fracture mechanics methodology for predicting the conditions under which brittle fracture may occur and thereby the utility of fracture mechanics design for ensuring cask structural integrity by ensuring an appropriate margin of safety. Positive assessments of ductile iron for cask containment and the quality of the casting process for producing ductile iron casks were made. The results of this programme have provided data to support IAEA efforts to develop brittle fracture acceptance criteria for cask containment.  相似文献   

18.
Abstract

The TN group has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for spent fuel and vitrified residues. The need to tailor design to real direct requirements (for instance, materials to be stored or transported, as well as site constraints such as crane capacities, access opening size) of the customer has been presented as an important reason explaining this large diversity. In this paper, another reason is discussed: the regulations. National and international transport regulations have a common basis: the Regulations for the Safe Transport of Radioactive Material set forth by the International Atomic Energy Agency (IAEA). Though the regulations are the same, authorities differ in their approaches, and the paper discusses the example of the materials: depending on the countries, for instance, brittle fracture is dealt with differently, and boronated materials are accepted or not. Storage requirements differ from one site to another. Differences may concern cask closure (double lid or single lid) and its leaktightness monitoring, dose rates criteria, place where casks are stored and the need for an anti-aircraft crash cover. Examples of local requirements and solutions provided by the TN group are discussed. It is shown that the TN group's wide knowledge of regulatory contexts allows TN designers to optimise the designs to take into account these different contexts.  相似文献   

19.
Abstract

An important problem of the handling of casks intended for spent nuclear fuel transport and storage is providing safety during all operations. In particular the safety requirements should be fulfilled during the cask cooling that precedes the discharge of spent nuclear fuel from the cask. An analysis has been performed for the CASTOR RBMK cask heat removal system. This provides forced cooling of the cask with the spent fuel assemblies in it, by water delivery into the cask inner cavity. As a result of analyses performed for the different flow rates of the cooling water, the maximum pressure in the cask cavity caused by water evaporation has been estimated and compared with the maximum permissible value and the time taken by the cask in cooling to the given temperature limit has been determined. On the basis of the analysis results the most preferable regime for CASTOR RBMK cask cooling is suggested.  相似文献   

20.
Abstract

Admissible limits for activity release from type B(U) packages for spent fuel transport specified in the International Atomic Energy Agency regulations (10?6 A2 h?1 for normal conditions of transport and A2 per week for accidental conditions of transport) have to be kept by an appropriate function of the cask body and its sealing system. Direct measurements of activity release from the transport casks are not feasible. Therefore, the most common method for the specification of leak tightness is to relate the admissible limits of activity release to equivalent standardised leakage rates. Applicable procedure and calculation methods are summarised in the International Standard ISO 12807 and the US standard ANSI N14·5. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. Two fundamental aspects in the assessment are the specification of conservative design leakage rates for normal and accidental conditions of transport and the determination of release fractions of radioactive gases, volatiles and particles from spent fuel rods. Design leakage rates identify the efficiency limits of the sealing system under normal and accidental transport conditions and are deduced from tests with real casks, cask models or components. The releasable radioactive content is primarily determined by the fraction of rods developing cladding breaches and the release fractions of radionuclides due to cladding breaches. The influence of higher burn-ups on the failure probability of the rods and on the release fractions are important questions. This paper gives an overview about methodology of activity release calculation and correlated boundary conditions for assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号