首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A probabilistic risk assessment (PRA) quantifies the frequency of criticality accidents during railroad transport of spent nuclear fuel casks (SFCs) in the USA. It evaluates the likelihood that undetected errors in fuel selection and/or fuel handling could result in a misloaded SFC susceptible to a criticality event following an accident during rail transport of the cask. The PRA shows that existing fuel burnup records and formal procedures for loading a SFC make the likelihood of shipping a misloaded SFC on the order of 2·6 × 10–6 per SFC. When combined with historical evidence regarding train accidents and an estimate of the likelihood that an accident could breach and submerge a SFC, the calculated frequency of criticality is below 2 × 10–12 over the 11 000 shipments that would be required to ship the spent fuel inventory generated by the current US fleet of nuclear reactors, assuming that they each operate for 60 years.  相似文献   

2.
Abstract

A synthesis on the mechanical characteristics of unirradiated and irradiated fuel rod claddings was performed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) in order to have reference data for the assessment of the safety demonstrations in normal and accident conditions of transport required by the procedure of package licensing. Indeed, the transport conditions correspond to a range of cladding temperatures (200–550°C) which is only partly covered by the data acquired within the framework of the safety demonstration relative to the reactor normal operating conditions, especially beyond 400°C. This work concerned Zircaloy-4 cladding material (Zry-4) and M5TM. Data about mechanical properties (elastic and ductile properties, creep behaviour), oxidation (in reactor and under air during transport), hydrides and fracture toughness have been collected and synthesised. The laws presented in the document can be used to obtain orders of magnitude of oxide layer thickness, hydrogen content and creep deformation rate. The following phenomena which could influence the mechanical behaviour of the cladding were more particularly studied: oxidation which could become very important during transport in case of cladding temperatures of ~500°C; creep for which only a few data ~500°C are available and which depends in particular on the internal pressure of the rods, the cladding oxidation and the presence of the hydrides; and recrystallisation of Zry-4 at ~500°C, which could have consequences on the mechanical properties of the cladding after cooling during the storage. For other topics of interest for the study of the mechanical behaviour of the cladding, such as the fracture toughness for example, it was identified that the data available is scarce.  相似文献   

3.
Abstract

In 2001 the Swiss nuclear utilities started to store spent fuel in dry metallic dual purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd, as the owner of the Mühleberg nuclear power plant, is involved in this process and has selected to store the spent fuel in a new high capacity dual purpose cask, the TN24BH. For the transport Cogema Logistics has developed a new medium size cask, the TN9/4, to replace the NTL9 cask, which has performed numerous shipments of BWR spent fuel in past decades. Licensed by the IAEA 1996, the TN9/4 is a 40 t transport cask, for seven BWR high burnup spent fuel assemblies. The spent fuel assemblies can be transferred to the ZWILAG hot cell in the TN24BH cask. These casks were first used in 2003. Ten TN9/4 shipments were made, and one TN24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN24BH high capacity dual purpose cask and the TN9/4 transport cask and describe in detail their characteristics and possibilities.  相似文献   

4.
Abstract

The finite element (FE) method is a powerful tool for the simulation of mechanical and thermal behaviour of structures. In recent years, the explicit FE method has increasingly been used in the development of transport packages and as part of approval applications to demonstrate the performance of packages. Testing and analysis are the two methods specified in the IAEA Regulations for the Safe Transport of Radioactive Material for demonstrating the structural and thermal performance of a transport package against the requirements of the Transport Regulations. The roles of testing and analysis, and the relative prominence of the two, may vary between Competent Authorities in different countries. This can range from analysis being regarded as the primary mode of demonstration with testing as confirmatory, to testing being the primary mode of demonstration supplemented by analysis. This paper describes the use of the non-linear FE code LS-DYNA in the licensing of a new container for the transport of new nuclear fuel. The package was classified as an Industrial Package (Fissile) in accordance with the IAEA Regulations, and hence it was necessary, among other things, to demonstrate that criticality criteria were satisfied under postulated impact conditions. Physical drop tests were carried out and the results are compared with LS-DYNA computer calculations using the same FE models developed to support the design of the new container. The analyses and tests clearly demonstrate the novel use of polyurethane foam as the container main energy absorber. The FE predictions are compared for accelerations, bolt loadings and global deformations of the container. In general good correlation was obtained between predictions and tests and the differences, which did occur, particularly for accelerations, are discussed and reconciled. The paper concludes that explicit analysis codes are now so reliable for container impact calculations that minimal test work should be pursued basically for key confirmatory impact scenarios.  相似文献   

5.
6.
7.
Abstract

Packages for the transport of radioactive material have to comply with national and/or international regulations. These regulations are widely based on the requirements set forth by the International Atomic Energy Agency (IAEA) in the 'Regulations for the safe transport of radioactive material'. In this framework, packages to transport fuel assemblies (including spent fuel assemblies) have to meet the requirements for packages containing fissile material. In accident conditions of transport, the applicant for the package design approval has to show that the package remains subcritical taking due account of the status of the contents in these conditions. In most cases, considering water ingress in the package, it is not possible to assume that the fissile material included in the fuel assemblies is dispersed in the package with the most severe conceivable distribution regarding criticality. In order to alleviate this difficulty, during the last years, we have provided a significant better knowledge of the conditions of the fuel assemblies to be transported. This was part of the Fuel Integrity Project, whose progress was regularly reported during PATRAM 2001 and PATRAM 2004 Symposia. However, for packages which encounter a large g-load during accident conditions of transport and/or which contain spent fuel assemblies with very high burn-up, it can be difficult to demonstrate that the fuel assemblies are not significantly damaged. Then, to make the criticality assessment considering water inleakage into the flask and a large release of fissile material within its cavity will not allow meeting the subcriticality criteria. For that reason, for our package designs, which use a gas and not water as an internal coolant and which fall into that category, the author has decided to take credit of the possibilities provided by the subparagraph 677 (b) of the Regulations. This paragraph allows not taking into account water in the package, provided that the package exhibits 'multiple high standard water barriers'. The paper describes the author's experience with the implementation of this paragraph. Two different cases are considered: either a double vessel, or a double lid. It will be explained when each of these solutions is implemented, and give examples of package designs with such features, as well as the approvals which were granted for these designs in various countries.  相似文献   

8.
Abstract

The theme of the 10th PATRAM Conference has been ‘looking to the future’. This contribution aims to give a UK perspective on future issues and challenges. In doing so, I will give a short summary of UK transport experience before going on to discuss the future and in particular the challenges and opportunities facing the UK radioactive transport industry.  相似文献   

9.
Abstract

In his plenary presentation at PATRAM 2010, Professor Shamsideen Elegba of the Nigerian Nuclear Regulatory Authority, Abuja, Nigeria, reviewed the regulatory framework for transport of radioactive materials in Africa.  相似文献   

10.
Abstract

Cylindrical fuel casks often have impact limiters surrounding the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and reducing peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following normal conditions of transport (NCT) and hypothetical accident conditions (HAC) impacts. Large casks are often certified by analysis only because of the cost associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 spent fuel containment cask found problems with the design of the impact limiter attachment system. Assumptions in the original safety analysis for packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.  相似文献   

11.
Abstract

The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations for a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or that participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding, the higher the inertia loads on the cladding, and, therefore, the lower the 'g' value at which buckling occurs. However, these solutions do not consider displacement compatibility between the fuel and the cladding during the buckling process. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading.  相似文献   

12.
Abstract

This paper aims to present an overview of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the competent authority (CA) is discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described.  相似文献   

13.
Abstract

The purpose of this paper is to perform a thermal analysis of a spent fuel storage cask in order to predict the maximum concrete and fuel cladding temperatures. Thermal analyses have been carried out for a storage cask under normal, off-normal and accident conditions. The environmental temperature is assumed to be 27°C under the normal condition. The off-normal condition has an environmental temperature of 40°C. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Four of the eight inlet ducts are assumed to be completely blocked. The accident condition is defined as a 100% blockage of air inlet ducts. The storage cask is designed to store 24 PWR spent fuel assemblies with a burn-up of 55,000 MWD/MTU and a cooling time of 7 years. The decay heat load from the 24 PWR assemblies is 25.2 kW. Thermal analyses of the ventilation system have been carried out for the determination of the optimum duct size and shape. The finite-volume computational fluid dynamics code FLUENT was used for the thermal analysis. From the results of the analysis, the maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal, off-normal and accident conditions.  相似文献   

14.
The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) on the reactivity analysis of light water reactor MOX core physics experiments was studied with the continuous-energy Monte Carlo calculation code MVP II. First, the following three different models were compared in the analysis of a representative unit cell of a MOX core tested at the KRITZ reactor: a Lattice model where Pu-rich agglomerates were assumed to exist in a fixed pitch, a statistical geometry (STG) model of MVP II, and a Random model where the random distribution of Pu-rich agglomerates was directly modeled. Since the three models gave comparable results, the STG model was used in parametric calculations to systematically understand the reactivity effect depending on the characteristics of Pu-rich agglomerates. In addition, the selected unit cells composing the MOX cores and one representing MOX core tested at the EOLE criticality facility were analyzed with the measured characteristics of Pu-rich agglomerates in MOX fuel. Consequently, the reactivity differences between the calculations assuming the homogeneous Pu distributions and those considering Pu-rich agglomerates were less than 0.0005 Δk/k/k', indicating that the effect of Pu-rich agglomerates was small on the reactivity analysis of the MOX cores tested in the EOLE facility.  相似文献   

15.
Abstract

The regulatory driven design of radioactive material transportation packages leads package vendors to perform analyses that demonstrate the ability of packages to meet the regulatory requirements. For risk assessment and communication, the analysis of package response to thermal environments that are more severe than those described in the regulations is required. In general, experimental and analytical assessments of casks exposed to thermal insults other than the regulatory environment are performed in the USA by the Department of Energy national laboratories. This paper provides a brief summary of some recent thermal analyses of spent fuel transportation packages exposed to thermal environments different from regulatory standards. The analyses were performed by Sandia National Laboratories under several different projects for multiple customers. These analyses examined the response of spent fuel packages exposed to severe thermal environments different from the regulatory hypothetical accident condition. One assessment determined the response of four generic casks to very long duration engulfing fires. The results from these analyses included fire durations necessary to reach critical temperatures of the fuel and seals. In another assessment, two certified spent fuel casks were analysed for exposure to 1 h pool fires. The height of the cask above the pool was varied to study the effect of the vapour dome on the heating of the casks. Another assessment investigated the effect of offset long duration fires on rail cask performance, which showed that casks can withstand offset fires of much longer duration than the regulatory fire. Other assessments examined the response of packages to thermal environments resulting from propane fires and realistic liquid hydrocarbon fires that included various positions of the transportation rail car in the simulation.  相似文献   

16.
A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ∼1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.  相似文献   

17.
Burn-up characteristics of accelerator-driven system, ADS has been evaluated utilizing the fuel composition from MOX PWRs spent fuel. The system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The liquid lead–bismuth, Pb–Bi, as spallation target, was put in the center of the core region. The general approach was conducted throughout the nitride fuel that allows the utilities to choose the strategy for destroying or minimizing the most dangerous high level wastes in a fast neutron spectrum. The fuel introduced surrounding the target region was the same with the composition of MOX from 33 GWd/t PWRs spent-fuel with 5 year cooling and has been compared with the fuel composition from 45 and 60 GWd/t PWRs spent-fuel with the same cooling time. The basic characteristics of the system such as burn-up reactivity swing, power density, neutron fluxes distribution, and nuclides densities were obtained from the results of the neutronics and burn-up analyses using ATRAS computer code of the Japan Atomic Energy research Institute, JAERI.  相似文献   

18.
Abstract

During the last year, Sogin (the Italian company in charge for decommissioning of Italian nuclear power plants) had to implement an accelerated decommissioning plan of a EUREX spent fuel pool due to finding a water leakage into the environment from the pool. EUREX is no longer operating a pilot reprocessing plant, which some years ago became the responsibility of Sogin. There were 52 spent fuel assemblies from the Trino Vercellese PWR nuclear power plant, 48 irradiated pins from a Garigliano BWR fuel assembly, and 10 plates from an irradiated MTR fuel assembly stored in the EUREX pool, so the first step of the accelerated decommissioning plan consisted in the evacuation of this spent fuel. Considering the necessity to start the evacuation as soon as possible, Sogin decided to use an already existing cask (AGN-1) used in the past for the transport of Trino and Garigliano fuel assemblies. This cask was requalified in order to obtain a transport licence for the fuel assemblies stored in the EUREX pool according to ADR 2005 regulation. The transport license for the AGN-1 cask loaded with EUREX fuel assemblies was released by APAT (the Italian Safety Authority) in the spring of 2007. Owing to the limited capacity of the EUREX pool crane (27 t for nuclear loads) and limited dimensions of pool operational area, it was not possible to transfer the AGN-1 cask (50 t) into the pool for fuel assemblies charging. The solution implemented to overcome this problem was the loading of the cask outside the pool. A special shielding shuttle was developed and used to allow safe spent fuel transfer between the pool and the cask. This procedure avoided also the problem of excessive contamination of cask surfaces that could have occurred due to very high level of contamination of EUREX pool water if the cask had been immersed in the pool. Additional shielding devices were developed and used to reduce dose rate during cask loading operations. Although the evacuation of spent fuel assemblies from the EUREX pool was a very challenging activity due to the short time available, unfavourable space conditions inside the pool building and handling tool limitations; all loading and transport operations were performed successfully and without particular problems. Ten transports were carried out to evacuate all of the spent fuel stored in the EUREX pool. Spent fuel was transferred to the Avogadro Deposit pool. The first loading sequence started on 2 May 2007 and the first transport was performed on 6 May 2007. The tenth and last transport was performed on 21 July 2007. A dose less than 50 μSv (neutron + gamma) was measured for the most exposed operator during a complete cask loading sequence.  相似文献   

19.
Abstract

Transport packages for spent fuel have to meet the requirements concerning containment, shielding and criticality as specified in the International Atomic Energy Agency regulations for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are, among others, important inputs for the evaluation of correspondent package capabilities under these conditions. The kind, accuracy and completeness of such information depend upon purpose of the specific problem. In this paper, the mechanical behaviour of spent fuel assemblies under accident conditions of transport will be analysed with regard to assumptions to be used in the criticality safety analysis. In particular the potential rearrangement of the fissile content within the package cavity, including the amount of the fuel released from broken rods has to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods of each fuel assembly among themselves as well as between fuel assemblies, basket, and cask body or cask lid, the exact mechanical analysis of such phenomena under drop test conditions is nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context a simplified analytical methodology for conservative estimation of fuel rod failures and spent fuel release is described. This methodology is based on experiences of BAM acting as the responsible German authority within safety assessment of packages for transport of spent fuel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号