首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu2ZnSnS4 (hereafter CZTS) thin films were successfully formed by vapor-phase sulfurization of precursors on a soda lime glass substrate (hereafter SLG) and a Mo-coated one (hereafter Mo-SLG). From the optical properties, we estimate the band-gap energy of this thin film as 1.45–1.6 eV which is quite close to the optimum value for a solar cell. By using this thin film as an absorber layer, we could fabricate a new type of thin film solar cell, which was composed of Al/ZnO:Al/CdS/CZTS/Mo-SLG. The best conversion efficiency achieved in our study was 2.62% and the highest open-circuit voltage was 735 mV. These device results are the best reported so far for CZTS.  相似文献   

2.
Cu2ZnSnS4 (CZTS) thin films were deposited by sputtering on glass substrates using stacked precursors. The stacked precursor thin films were prepared from Cu, SnS2 and ZnS targets at room temperature with different stacking orders of Cu/SnS2/ZnS/glass (A), ZnS/Cu/SnS2/glass (B) and SnS2/ZnS/Cu/glass (C). The stacked precursor thin films were sulfurized using a tubular rapid thermal annealing system in a mixed N2 (95%)+H2S (5%) atmosphere at 550 °C for 10 min. The effects of the stacking order in the precursor thin films on the structural, morphological, chemical, electrical and optical properties of the CZTS thin films were investigated. X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy studies showed that the annealed CZTS thin film using a stacking order A had a single kesterite crystal structure without secondary phases, whereas stacking orders B and C have a kesterite phase with secondary phases, such as Cu2−xS, SnS2 and SnS. The annealed CZTS thin film using stacking order A showed a very dense morphology without voids. On the other hand, the annealed CZTS thin films using stacking orders B and C contained the volcano shape voids (B) and Sn-based secondary phases (C) on the surface of the annealed thin films. The direct band gap energies of the CZTS thin films were approximately 1.45 eV (A), 1.35 eV (B) and 1.1 eV (C).  相似文献   

3.
Nb-doped TiO2 films have been fabricated by RF magnetron sputtering as protective material for transparent-conducting oxide (TCO) films used in Si thin film solar cells. It is found that TiO2 has higher resistance against hydrogen radical exposure, utilizing the hot-wire CVD (catalytic CVD) apparatus, compared with SnO2 and ZnO. Further, the minimum thickness of TiO2 film as protective material for TCO was experimentally investigated. Electrical conductivity of TiO2 in the as-deposited film is found to be 10−6 S/cm due to the Nb doping. Higher conductivity of 10−2 S/cm is achieved in thermally annealed films. Nitrogen treatments of Nb-doped TiO2 film have been also performed for improvements of optical and electric properties of the film. The electrical conductivity becomes 4.5×10−2 S/cm by N2 annealing of TiO2 films at 500 °C for 30 min. It is found that the refractive index n of Nb-doped TiO2 films can be controlled by nitrogen doping (from n=2.2 to 2.5 at λ = 550 nm) using N2 as a reactive gas. The controllability of n implies a better optical matching at the TCO/p-layer interface in Si thin film solar cells.  相似文献   

4.
Chemical vapor deposition (CVD) in an open tube system was employed to deposit single-phase CuGaSe2 thin films on plain and Mo-coated glass substrates. The use of HCl and ternary CuGaSe2 source material resulted in non-stoichiometric volatilization of the source material. The use of binary source materials – Cu2Se and Ga2Se3 – in combination with I2 and HCl as the respective transport agents yielded single-phase CuGaSe2 thin films while the source materials were volatilized stoichiometrically. Mo/CuGaSe2/CdS/ZnO devices were fabricated from these samples exhibiting an open-circuit voltages up to Voc=853 mV.  相似文献   

5.
Cu2ZnSnS4 (CZTS) absorbers were grown by sulfurization of Cu/ZnSn/Cu precursors in sulfur atmosphere. The reaction mechanism of CZTS formation from the precursor was analyzed using XRD and Raman spectroscopy. The films with a single phase CZTS were formed at 560 and 580 °C by sulfurization for 30 min. The film grown at 560 °C showed bi-layer morphology with grooved large grains on the top and dense small grains near the bottom of the film. On the other hand, the film grown at 580 °C showed large grains with grooves that are extended from surface top to bottom of the film. The solar cell fabricated with the CZTS film grown at 560 °C showed the best conversion efficiency of 4.59% for 0.44 cm2 with Voc=0.545 V, Jsc=15.44 mA/cm2, and FF=54.6. We found that further improvement of the microstructure of CZTS films can increase the efficiency of CZTS solar cells.  相似文献   

6.
Cu2ZnSnS4 (CZTS) is a p-type semiconductor, candidate to replace Cu(In,Ga)Se2 as absorber layer in thin film solar cells. The best solar cells based on CZTS present efficiencies up to 6.8%. These results were improved when metallic Zn was replaced by ZnS, which may imply a different chemical path for the formation of CZTS. In this study it is compared with the diffusion of Zn on Cu2SnS3 by introducing metallic Zn or ZnS. For this CZTS films were grown by sulphurization of Cu2SnS3, some with a Zn layer and others with a ZnS layer. The influence of H2 during the annealing process is also studied and for this some sulphurizations were done in the presence of a partial atmosphere of H2.The SEM micrographs of the samples show a columnar growth structure of the films with different degrees of compactness. The compactness is improved in the samples where a ZnS layer was present in the precursor and the sulphurization was done in the presence of H2. EDS chemical profiling revealed regular zinc distribution for the samples with metallic Zn whilst the ones with ZnS exhibited a Zn-rich surface. X-ray diffraction (XRD) indicated the presence of CZTS and Cu2−xS phases in all samples. These results were confirmed by Raman scattering.It was concluded that the sulphurization of Cu2SnS3 films with the use of ZnS layers under H2 atmosphere produces better quality CZTS thin films, since it promotes Zn diffusion and avoids Zn losses by evaporation.  相似文献   

7.
The spray Ion Layer Gas Reaction (ILGAR) process starts with ultrasonic nebulisation of the precursor solution, e.g. InCl3/ethanol for our successful buffer material In2S3. In an aerosol assisted chemical vapour deposition (AACVD) type reaction an In(O,OH,Cl) film is deposited on a heated substrate and is subsequently converted to In2S3 by H2S gas. The cycle of these steps is repeated until the required layer thickness is obtained. The robust and reproducible process allows a wide control of composition and morphology.Results of this “spray-ILGAR” method with respect to process, material properties and its application depositing the buffer layer in chalcopyrite solar cells are reviewed. New aspects such as the investigation of the complex chemical mechanism by mass spectrometry, the process acceleration by the addition of H2S gas to the aerosol, the controlled deposition of ZnS nano-dot films and finally the latest achievements in process up-scaling are also included.Solar cells based on industrial Cu(In,Ga)(S,Se)2 absorbers (Avancis GmbH) with a Spray-ILGAR In2S3 buffer reached 14.7% efficiency (certified) and 15.3% with a ZnS/In2S3 bi-layer buffer comparable to reference cells using standard CdS buffer layers deposited by chemical bath deposition (CBD).The quasi-dry, vacuum-free ILGAR method for In2S3 buffer layers is well suited for industrial in-line production and is capable of not only replacing the standard buffer material (the toxic CdS) but also the often slow CBD process. A tape coater for 10 cm wide steel tape was constructed. It was shown that In2S3 layers could be produced with an indium yield better than 30% and a linear production speed of 1m/min. A roll-to-roll pilot production line for electrochemically deposited Cu(In,Ga)Se2 with ILGAR buffer is running in industry (CIS-Solartechnik, Hamburg). A 30x30 cm2 prototype of an ILGAR in-line coater developed by Singulus and Helmholtz Zentrum Berlin is currently being optimised. First 30×30 cm2 encapsulated modules achieved efficiencies up to 13.0% (CdS buffered reference 13.3%).  相似文献   

8.
Thin film of Cu2ZnSnS4 (CZTS) has been successfully deposited by sol–gel technique on n-type silicon and glass substrates to fabricate a heterojunction photodiode. The structural properties of the film were investigated by atomic force microscopy. The AFM image of the Cu2ZnSnS4 film reveals that the film is a nanostructure material formed from nanoparticles with the particle size of 50–90 nm. The optical band gap, Eg of the Cu2ZnSnS4 film was found to be 1.48 eV and the obtained optical band gap suggests that CZTS is very suitable for photovoltaic and optoelectronic applications. The current–voltage characteristics of the Al/n-Si/Cu2ZnSnS4/Al diode exhibit a good rectification behavior with ideality factor of 2.84 and barrier height of 0.738 eV. The interface states of the diode were analyzed by series resistance and conductance-voltage methods. The presence of interface states in series resistance–voltage plots was confirmed by the illumination. The interface state density Dit for the diode was found to be 3.63 × 1012 eV−1 cm−2. The obtained results indicate that the Al/n-Si/Cu2ZnSnS4/Al diode is a photosensor based on controlling of interface states by illumination.  相似文献   

9.
The properties of Cu2ZnSnS4 (CZTS) thin films deposited by sol-gel sulfurization were investigated as a function of the chemical composition of the sol-gel solutions used. The chemical composition ratio Cu/(Zn+Sn) of the sol-gel solution was varied from 0.73 to 1.00, while the ratio Zn/Sn was kept constant at 1.15. CZTS films deposited using sol-gel solutions with Cu/(Zn+Sn)<0.80 exhibited large grains. In addition, the band gaps of these Cu-poor CZTS thin films were blue shifted. Solar cells with the structure Al/ZnO:Al/CdS/CZTS/Mo/soda lime glass were fabricated under non-vacuum conditions. The solar cell with the CZTS layer deposited using the sol-gel solution with Cu/(Zn+Sn)=0.80 exhibited the highest conversion efficiency of 2.03%.  相似文献   

10.
Nanocrystalline titania thin films were prepared by screen printing in order to efficiently control and optimize the main step of the dye-sensitized solar cells (DSSCs) fabrication process. Different compositions of nanocrystalline titanium dioxide screen-printing pastes are described, based on 2-ethyl-1-hexanol solvent and commercial Degussa P25 TiO2. The rheological properties of the prepared pastes are presented as the crucial parameter of the deposition procedure. The produced titania thin films are extensively characterized by means of spectroscopy (Raman, XRD) and microscopy (SEM, AFM). The performance (induced photon-to-current efficiency—IPCE% and overall energy conversion efficiency—η%) of the corresponding DSSCs is also reported.  相似文献   

11.
Polycrystalline Cu2ZnSnS4 (CZTS) thin films have been directly deposited on heating Mo-coated glass substrates by Pulsed Laser Deposition (PLD) method. The results of energy dispersive X-ray spectroscopy (EDX) indicate that these CZTS thin films are Cu-rich and S-poor. The combination of X-ray diffraction (XRD) results and Raman spectroscopy reveals that these thin films exhibit strong preferential orientation of grains along [1 1 2] direction and small Cu2−xS phase easily exists in CZTS thin films. The lattice parameters and grain sizes have been examined based on XRD patterns and Atom Force Microscopy (AFM). The band gap (Eg) of CZTS thin films, which are determined by reflection spectroscopy varies from 1.53 to 1.98 eV, depending on substrate temperature (Tsub). The optical absorption coefficient of CZTS thin film (Tsub=450 °C) measured by spectroscopic ellipsometry (SE) is above 104 cm−1.  相似文献   

12.
This paper reviews results of studies on different materials and technologies for monograin layer (MGL) solar cells conducted at Tallinn University of Technology. The MGL consists of monograin powder crystals embedded into an organic resin. The MGL combines the superior photoelectrical parameters of single crystals with the advantages of polycrystalline materials, such as the low cost and simple technology of materials and layers preparation and the possibility of making devices of practically unlimited area. A main technological advantage is the separation between absorber and cell formations. The developments in the field of monograin materials of CuInSe2, Cu2ZnSnS4 and Cu2ZnSnSe4 and technical parameters of MGL solar cells are summarized.  相似文献   

13.
Cu2ZnSnS4 (CZTS) thin films prepared by a non-vacuum process based on the sulfurization of precursor coatings, consisting of a sol-gel solution of Cu, Zn, and Sn, under H2S+N2 atmosphere were investigated. The structure, microstructure, and electronic properties of the CZTS thin films as well as solar cell parameters were studied in dependence on the H2S concentration. The sulfurization process was carried out at 500 °C for 1 h in an H2S+N2 mixed-gas atmosphere with H2S concentrations of 3%, 5%, 10%, and 20%. As the H2S concentration decreased from 20% to 5%, the S content of the CZTS thin films decreased. However, when the H2S concentration was decreased below 3%, the S content of the films began to increase. A CZTS thin film prepared with an H2S concentration of 3% had grains in the order of 1 μm in size, which were larger than those of films prepared at other H2S concentrations. Furthermore, the most efficient solar cell, with a conversion efficiency of 2.23%, was obtained from a sample sulfurized at an H2S concentration of 3%.  相似文献   

14.
The path towards a high-performance solution-processed kesterite solar cell   总被引:3,自引:0,他引:3  
Despite the promise of thin-film Cu(In,Ga)(S,Se)2 (CIGSSe) chalcopyrite and CdTe photovoltaic technologies with respect to reducing cost per watt of solar energy conversion, these approaches rely on elements that are either costly and/or rare in the earth's crust (e.g., In, Ga, Te) or that present toxicity issues (e.g., Cd), thereby potentially limiting these technologies in terms of future cost reduction and production growth. In order to develop a photovoltaic technology that is truly compatible with terawatt deployment, it is desirable to consider material systems that employ less toxic and lower cost elements, while maintaining the advantages of the chalcopyrite and CdTe materials with respect to appropriate direct band gap tunability over the solar spectrum, high device performance (e.g., >10% power conversion efficiency) and compatibility with low-cost manufacturing. In this review, the development of kesterite-based Cu2ZnSn(S,Se)4 (CZTSSe) thin-film solar cells, in which the indium and gallium from CIGSSe are replaced by the readily available elements zinc and tin, will be reviewed. While vacuum-deposited devices have enabled optimization within the compositional phase space and yielded selenium-free CZTS device efficiencies of as high as 6.8%, more recently a liquid-based approach has been described that has enabled deposition of CZTSSe devices with power conversion efficiency of 9.7%, bringing the kesterite-based technology into a range of potential commercial interest. Electrical characterization studies on these high-performance CZTSSe cells reveal some of the key loss mechanisms (e.g., dominant interface recombination, high series resistance and low minority carrier lifetime) that limit the cell performance. Further elucidation of these mechanisms, as well as building an understanding of long-term device stability, are required to help propel this relatively new technology forward.  相似文献   

15.
Abstract

Extremely thin absorber (eta) solar cells aim to combine the advantages of using very thin, easily and cheaply produced absorber layers on nanostructured substrates with the stability of all-solid-state solar cells using inorganic absorber layers. The concept of using nanostructured substrates originated from the dye-sensitised solar cell, where having a very high surface area allows the use of very thin layers of dye while still absorbing sufficient sunlight. However, both the dye and liquid electrolyte used in these devices demonstrated poor stability, and efforts were made to replace them with very thin inorganic absorber layers and solid state hole collectors respectively. The combination of these concepts – a nanostructured substrate coated with a very thin inorganic absorber and completed with a solid state hole collector – is known as an eta solar cell. This review summarises the development of both the inorganic absorbers and solid state hole collectors in porous TiO2 and ZnO nanorod based cells, focusing on the material properties and growth/deposition methods. Future possibilities for eta solar cells are discussed, including utilisation of a wider range of materials, synthesis methods and novel materials such as quantum dots to produce tuned band gap and multijunction solar cells.  相似文献   

16.
Cu2ZnSnS4 thin films have been successfully prepared by a novel synthesis process that involves a single step deposition of Cu2ZnSnS4 followed by a post-annealing treatment at 550 °C for 60 min in the atmosphere of N2+H2S (5%). The microstructure, morphology, composition and optical property of the film have been investigated in detail. It is found that the Na2S2O35H2O concentration in the solution has a significant effect on the Cu2ZnSnS4 thin films. X-ray diffraction data indicates that the annealed Cu2ZnSnS4 thin films have a kesterite structure with preferred orientation along the (1 1 2) plane. Uniform and compact topographies are observed in some annealed films. From the energy dispersive X-ray spectroscopy analysis, it can be seen that Cu-poor and Zn-rich Cu2ZnSnS4 thin films have been obtained. The direct band gap energy of the film is about 1.5 eV.  相似文献   

17.
Rapid thermal processing (RTP) of SiN x thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were discussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiN x thin film by about 200% after the RTP was reached. PC-1Dsimulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique. __________ Translated from Journal of Shanghai Jiaotong University, 2008, 42(1): 152–155 [译自: 上海交通大学学报]  相似文献   

18.
The optical absorption coefficient of thin film and bulk Cu2O at room temperature is obtained from an accurate analysis of their transmittance and reflectance spectra. These absorption spectra are modeled, together with the low temperature data reported in the literature, using an analytical expression to assess and quantify the role of the different absorption mechanisms. The results suggest that direct forbidden transitions and indirect transitions play an almost equally relevant role. A table of the optical constants of Cu2O single crystal is given for reference.  相似文献   

19.
Cathodic electrodeposition in the presence of EDTA in aqueous solution was used to prepare Cu2S thin film deposited on Ti substrate. The effect of deposition potential, concentration and deposition time was studied to determine the optimum condition for electro-deposition process. Cyclic voltammetry was performed to elucidate the electrodic processes that occur while potentials for electrodeposition were applied to determine the optimum potential for electrodeposition. The thin films are characterised by X-ray diffractometry. The photoactivity of the deposited films and their conduction types were evaluated using photoelectrochemical technique. The band gap energy and type of optical transitions were determined from optical absorbance data.  相似文献   

20.
Thin film modules based on CIS-technology with power outputs ranging between 5 and 40 W and corresponding circuit aperture area efficiencies between 9.6% and 11% have been introduced recently by Siemens Solar. Current status of production yield and performance is presented demonstrating significantly higher performance than alternative thin film technologies. Further developments have resulted in new champion efficiencies of 12.1% for a large commercial size modules and 14.7% for a small laboratory module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号