首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
控制冷却获得贝氏体/马氏体球墨铸铁   总被引:10,自引:5,他引:10  
周荣  胡国忠 《铸造》1996,(9):14-17
铸件经奥氏体化后,采用控制冷却的技术,将铸件快速冷却至贝氏体中温转变区,中止喷射冷却,采用相应保温措施,利用铸件余热,创造类似于等温淬火的外部条件,以完成贝氏体转变,获得贝氏体组织为主(70%以上)、少量马氏体及残余奥氏体基体的球墨铸铁。其冲击韧性在15J/cm2以上,硬度大于HRC50。将此材料用于生产磨球等铸件,具有工艺简便的优势,可取得明显的经济效益  相似文献   

2.
27CrMo27S钢奥氏体连续冷却转变曲线   总被引:1,自引:0,他引:1  
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁索体和贝氏体(F+B),当冷却速度为8-24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。  相似文献   

3.
在Gleeble-1500热模拟试验机上对C-Mn-Si-Mo系低碳贝氏体钢进行不同冷却速度的热模拟试验,并对其组织进行观察,以确定该钢的连续冷却转变(CCT)曲线。结果表明,试验钢的马氏体转变临界冷却速度大于20 ℃/s,为得到以贝氏体为主的组织,冷却速度应该控制在5~20 ℃/s之间;Mo的添加使得珠光体转变区和贝氏体转变区分离。  相似文献   

4.
对低合金高强度耐磨钢 NM400进行两种不同的轧制冷却工艺研究:前端集中冷却和稀疏冷却。采用光学显微镜(OM)、扫描电子显微镜(SEM)、SANSCMT5105电子万能试验机和 HV9250仪器化落锤式冲击试验机,研究了两种不同轧制工艺下 NM400的组织和析出物的演变规律以及对应的力学性能的变化。试验结果显示:两种冷却工艺条件下 NM400的组织基本相同,均以粒状贝氏体为主。第一种冷却条件的冷速较大,组织有由粒状贝氏体向板条贝氏体转变的趋势,且析出物尺寸较大;第二种冷却条件的冷速较低,组织中存在先共析铁素体,且析出物尺寸较小。含有板条贝氏体组织的强度较高,达到 637.5MPa,含有先共析铁素体的组织-20℃低温冲击功较高,达到了167J。  相似文献   

5.
采用膨胀仪、光学显微镜和维氏硬度计研究新型槽帮钢的连续冷却转变行为,获得连续冷却转变(CCT)曲线。结果表明,CCT曲线存在高温铁素体-珠光体转变区、中温贝氏体转变区和低温马氏体转变区。随着冷却速度的增大,室温硬度不断提高,微观组织由铁素体-珠光体向贝氏体和马氏体过渡,最终形成单一马氏体组织。在实测冷却曲线中,当冷却速度小于0.14℃/s时,组织主要为高温铁素体-珠光体转变区;当冷却速度为0.14~0.81℃/s时主要为高温、中温复合转变区,室温组织主要为铁素体、珠光体和贝氏体;当冷却速度为0.81~1.62℃/s时为高温、中温和低温复合转变区,室温组织为铁素体、珠光体、贝氏体和马氏体;当冷却速度为4.05℃/s时为中温、低温两相转变区,高温转变区消失,室温组织为贝氏体和马氏体;当冷却速度高于8.10℃/s时,为马氏体单相转变区。随着冷却速度由0.06℃/s提高到40.5℃/s,微观组织由铁素体-珠光体过渡为贝氏体-马氏体,直至单相马氏体组织,其室温显微硬度由195 HV5(冷速为0.06℃/s)增大到515 HV5(冷速为40.5℃/s)。  相似文献   

6.
800MPa级超级钢变形后连续冷却过程的组织变化   总被引:2,自引:0,他引:2  
利用热模拟试验机研究了一种屈服强度达800MPa的高强度低合金钢在连续冷却工艺条件下的组织变化情况。并利用热膨胀法建立了静态和动态条件下的连续冷却转变曲线,分析了冷却速度对组织和性能的影响。研究表明,在较宽冷却速度范围内(5-20℃/s)都能有贝氏体组织生成;变形温度对中温贝氏体转变和贝氏体显微硬度的影响很小。  相似文献   

7.
采用DIL805L热膨胀仪,研究了Si-Mn-Mo系贝氏体非调质钢奥氏体连续冷却转变过程(CCT曲线),分析其显微组织及硬度、强度的变化。结果表明,试验钢在小于7℃/s较宽冷速范围内均可获得贝氏体+铁素体组织,且贝氏体以粒状贝氏体+板条贝氏体2种形态存在。随着冷却速度增加,显微组织逐渐转变为以马氏体为主,同时晶粒细化作用增强,硬度及抗拉强度增加。可以通过对转变组织的控制,得到综合力学性能良好的贝氏体钢。  相似文献   

8.
利用差分膨胀仪、金相及透射电镜研究了675装甲钢过冷奥氏体在不同冷却速度下的相变过程及产物。结果表明,冷却速度在3℃/min-2000℃/min范围内,随冷速的增大,675装甲钢中发生的组织转变变化很大,相变产物依次蹦现粒状贝氏体(粒B)、上贝氏体(上B)、下贝氏体(下B)以及片状和板条混合马氏体(M)。此外,675装甲钢具有相当好的淬透性,临界淬火速度为25℃/min,Ms点为320℃。  相似文献   

9.
采用Gleeble-3500热模拟试验机模拟了550 MPa级桥梁钢板热变形奥氏体的动态连续冷却转变过程,结合金相法绘制实验钢的CCT曲线,并对相变组织进行硬度和拉伸性能测试。结果表明,当冷却速度小于1℃/s时,钢的冷却组织为粒状贝氏体,其基体为铁素体;当冷速为5℃/s时,转变组织中开始出现少量板条贝氏体,为粒状贝氏体+板条贝氏体的混合组织,且粒状贝氏体岛状组织明显沿板条界面分布;随冷速继续增大,粒状贝氏体减少,板条贝氏体特征更加明显。随冷速的增大,组织细化,连续冷却转变组织硬度增加,强度升高。  相似文献   

10.
采用膨胀法测定机械工程用的高强度PQ600Nb-Ti微合金化钢的CCT曲线,采用金相显微镜观察不同冷速下的显微组织。分析发现:当冷速低于10.00℃/s,得到的组织为铁素体(F)+珠光体(P);中速冷却时(冷速大于16.67℃/s),得到的组织为比较细小的铁素体(F)+贝氏体(B);高速冷却时(冷速大于40.00℃/s),铁素体(F)+贝氏体(B)组织进一步细化,且贝氏体组织为板条状。  相似文献   

11.
微合金低碳贝氏体钢形变奥氏体连续冷却转变行为   总被引:2,自引:0,他引:2  
利用Gleeble 1500热模拟试验机研究了微合金化低碳贝氏体钢形变连续冷却转变行为,并采用OM和TEM分析了冷却速度对组织的影响规律.结果表明,在连续冷却条件下,所研究钢种在1~25℃/s的冷却速度范围内均可以得到贝氏体组织;随着冷却速度的提高,贝氏体转变开始温度降低.当冷却速度较低时,转变产物主要为粒状贝氏体,当冷却速度较高时,转变产物主要为板条状贝氏体.贝氏体铁素体板条由亚板条组成,亚板条宽度约200~400 nm.研究结果可为生产实践和新_T艺的制定提供参考依据.  相似文献   

12.
采用淬火膨胀仪测定了两种不同Cr含量(0.2%和0.5%)的贝氏体钢筋的连续冷却转变曲线(CCT曲线),并采用光学显微镜(OM)、扫描电镜(SEM)和维氏硬度分析了Cr元素对贝氏体钢筋过冷奥氏体连续冷却转变规律、显微组织特别是贝氏体组织转变规律以及显微硬度的影响。研究表明,Cr含量从0.2%提高至0.5%对贝氏体转变具有显著影响;同时,少量的Cr对贝氏体的形态及分布具有显著影响,当Cr含量为0.2%时,贝氏体形态以粒状贝氏体和上贝氏体板条为主,但是Cr提高至0.5%时,观察到了"柳叶状"的下贝氏体组织,因此添加少量的Cr即可显著提高贝氏体转变区间钢的显微硬度。  相似文献   

13.
通过热模拟试验研究了铝硅合金化耐候钢在形变强化相变及冷却过程中的组织演变规律。结果表明.其组织演变符合低碳钢形变强化相变的基本规律,形变温度较低时,铁素体转变量较高,晶粒尺寸较小。奥氏体晶粒细化促进形变强化相变过程的发生。经高温奥氏体和形变强化相变两道次变形并控制后续冷却工艺可以获得细晶铁素体和不同第二组织——直接淬火为铁素体(F)+马氏体(M),以30℃/s冷却为铁素体(F)+贝氏体(B),以2℃/s冷却为铁素体(F)+珠光体(P)。当冷却速度大于30℃/s时,细晶铁素体长大不明显。  相似文献   

14.
采用淬火相变热膨胀仪测定了30MnNiCuMoB-RE铸钢890℃完全奥氏体化后以不同速度连续冷却时的膨胀曲线。通过金相检验和硬度测定研究了30MnNiCuMoB-RE铸钢在连续冷却过程中的相变动力学。结果表明:30MnNiCuMoB-RE铸钢在890℃完全奥氏体化后以0.01~100℃/s的速率冷却时,随着冷却速率的增大,奥氏体依次转变为铁素体、贝氏体和马氏体,铁素体转变温度区间为717~611℃,贝氏体转变温度区间为590~323℃,马氏体转变温度区间为313~168℃;从获得的连续冷却转变(CCT)曲线可知,随着冷却速率的降低,发生贝氏体相变的临界冷速为50℃/s,发生铁素体转变的临界冷速为0.5℃/s;由于钢中存在一定程度的偏析,以0.01~0.2℃/s的速率冷却时,奥氏体依次转变为铁素体和贝氏体,钢的组织不均匀;随着冷却速率的提高,钢的硬度从200 HV10提高至500 HV10。  相似文献   

15.
利用DIL805A膨胀仪测定了ER70S-G钢的过冷奥氏体连续冷却转变(CCT)曲线,并结合金相-硬度法确定过冷奥氏体在不同冷却速率下的组织转变。结果表明,ER70S-G钢连续冷却过程中,冷速在0.1~0.6 ℃/s范围内时,组织为铁素体+珠光体;冷速为0.8 ℃/s时,组织为铁素体+珠光体+贝氏体;冷速在1~20.0 ℃/s范围内时,组织为铁素体+贝氏体。  相似文献   

16.
以NM400耐磨钢为研究对象,应用Gleeble-1500热模拟机分别研究了静态下和动态下冷却速度对NM400耐磨钢组织的影响。结果表明:在静态下冷速为5℃/s时得到的组织为铁素体+贝氏体,随着冷速的增加贝氏体转变范围增加,当冷速为30~50℃/s时得到的组织为贝氏体+马氏体组织;而动态下冷却速度为0.5~1.0℃/s时组织为多边形铁素体+粒状贝氏体;冷速为5~15℃/s时粒状贝氏体组织转变为板条贝氏体组织,冷却速度在20℃/s以上,组织主要是贝氏体+马氏体。通过动态连续冷却组织的分析,建议直接淬火工艺为:冷却速度应该大于15℃/s以便得到贝氏体组织或者贝氏体和马氏体的混合组织,冷却开始温度应该在800~850℃,而冷却结束温度在400~450℃。  相似文献   

17.
用膨胀法测定了贝氏体钢的连续冷却转变曲线,对转变产物进行了显微组织观察,研究了冷却速率对贝氏体组织形成的影响,并讨论了合金元素对试验钢性能的影响.研究表明,试验钢在冷却速率为2 ℃/s时已有较多的贝氏体组织发生转变;合金元素V抑制了铁素体和珠光体的转变;Cr提高了贝氏体开始转变的温度.结果表明,在很宽温度围内都可以得到以贝氏体为主的转变组织; V的加入扩大了贝氏体转变区,细化了铁素体晶粒;适量Cr的加入提高了试验钢的抗拉强度,并降低了屈强比.  相似文献   

18.
利用AISI 4340钢热膨胀实验,研究了奥氏体化时间对贝氏体连续转变动力学的影响.将热膨胀试样加热到950℃,经10-120min奥氏体化,在20s内迅速冷却到550℃,在随后的120min缓慢冷却到350℃,然后以100℃/s迅速冷却至室温.贝氏体连续冷却转变起始温度(Bs)和50%转变温度(Bm)随奥氏体化时间而显著增加,贝氏体相变结束温度(Bf)几乎不变.Bs可能与AlN等碳、氮化合物粒子在原奥氏体晶界的析出及合金元素的作用有关.贝氏体连续冷却转变速率随贝氏体体积分数的变化可以分成三个阶段:快速增长阶段、缓慢减小阶段和快速减小阶段.产生这种现象的原因可能是由于在连续转变过程中温度的降低、碳的扩散及合金元素的作用等造成的.  相似文献   

19.
针状贝氏体斜楔铸件的基体组织是针状贝氏体+少量马氏体,要想得到这种基体组织,就必须要求铸件在凝固后温度能迅速降至350℃以下,并在这一温度下进行冷却。这对其砂型提出了严格的要求。本文分析了造型材料组成、铸型紧实度和铸型初始温度与铸件基体组织的关系,指出了砂处理系统改造的必要性,并介绍了该砂处理系统的改造设计。  相似文献   

20.
采用Formastor全自动相变仪进行了两段式冷却条件下C-Mn钢的热膨胀试验,并结合组织观察和显微硬度测量,研究了冷却速度以及发生部分先共析铁素体转变对奥氏体中温转变的影响。结果表明:随着冷却速度的增大和先共析铁素体含量的增加,贝氏体相变开始温度和结束温度均降低,贝氏体转变量减少;奥氏体随冷却速度的增大,转变产物由铁素体+珠光体逐渐变为魏氏组织铁素体+珠光体、网状铁素体+魏氏组织+贝氏体、马氏体的趋势;而对已发生部分先共析铁素体转变的过冷奥氏体,随先共析铁素体含量的减少,组织由魏氏组织+贝氏体向魏氏组织+马氏体转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号