首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermodynamic analysis of hydrogen production from biomass gasification   总被引:1,自引:0,他引:1  
An investigation is reported of the thermodynamic performance of the gasification process followed by the steam-methane reforming (SMR) and shift reactions for producing hydrogen from oil palm shell, one of the most common biomass resources. Energy and exergy efficiencies are determined for each component in this system. A process simulation tool is used for assessing the indirectly heated Battelle Columbus Laboratory (BCL) gasifier, which is included with the decomposition reactor to produce syngas for producing hydrogen. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, with the Gibbs free energy minimization approach. The gasifier with the decomposition reactor is observed to be one of the most critical components of a biomass gasification system, and is modeled to control the produced syngas yield. Also various thermodynamic efficiencies, namely energy, exergy and cold gas efficiencies are evaluated which may be useful for the design, optimization and modification of hydrogen production and other related processes.  相似文献   

2.
In the present work, the generation of hydrogen rich synthetic gas from fluidized bed steam gasification of rice husk has been studied. An equilibrium model based on equilibrium constant and material balance has been developed to predict the gas compositions. The equilibrium gas compositions are compared with the experimental data of the present group as well as of available literature. The energy and exergy analysis of the process have been carried out by varying steam to biomass ratio (ψ) within the range between 0.1-1.5 and gasification temperature from 600 °C to 900 °C. It is observed that both the energy and exergy efficiencies are maximum at the CBP (carbon boundary point) though the hydrogen production increases beyond the CBP. The HHV (higher heating value) and the external energy input both continuously increase with ψ. However, the hydrogen production initially increases with increase in temperature up to 800 °C and then becomes nearly asymptotic. The HHV decreases rapidly with increase in temperature and energy input increases. Therefore, gasification in lower temperature region is observed to be economical in terms of a trade off between external energy input and HHV of the product gas.  相似文献   

3.
This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by burning char in a separate combustion section of the gasifier and subsequently the heat is transferred to the gasification section. The advantages of indirect gasification are no syngas dilution with nitrogen and no external heat source required. The production process involves several process units, including biomass gasification, syngas cooler, cleaning and compression, methanation reactors and SNG conditioning. The process is simulated with a computer model using the flow-sheeting program Aspen Plus. The exergy analysis is performed for various operating conditions such as gasifier pressure, methanation pressure and temperature. The largest internal exergy losses occur in the gasifier followed by methanation and SNG conditioning. It is shown that exergetic efficiency of biomass-to-SNG process for woody biomass is higher than that for waste biomass. The exergetic efficiency for all biomass feedstock increases with gasification pressure, whereas the effects of methanation pressure and temperature are opposite for treated wood and waste biomass.  相似文献   

4.
In this paper, an integrated solid oxide fuel cell (SOFC) and biomass gasification system is modeled to study the effect of gasification agent (air, enriched oxygen and steam) on its performance. In the present modeling, a heat transfer model for SOFC and thermodynamic models for the rest of the components are used. In addition, exergy balances are written for the system components. The results show that using steam as the gasification agent yields the highest electrical efficiency (41.8%), power-to-heat ratio (4.649), and exergetic efficiency (39.1%), but the lowest fuel utilization efficiency (50.8%). In addition, the exergy destruction is found to be the highest at the gasifier for the air and enriched oxygen gasification cases and the heat exchanger that supplies heat to the air entering the SOFC for the steam gasification case.  相似文献   

5.
The purpose of this paper is to conduct a parametric study to show the best steam to carbon ratio that produces the maximum system performance of an integrated gasifier for hydrogen production. The study focuses on the energy and exergetic efficiency of the system and hydrogen production. The work is completed using computer simulation models in Engineering Equation Solver software package. This software is used for its extensive thermodynamic properties library. An equilibrium based model is used to determine the performance of the system. The data is presented in graphs which show the chemical composition in molar fractions of the syngas, the overall energy and exergy efficiency of the system, and the hydrogen production rates. A study of these parameters is conducted by varying the steam to carbon ratio entering the gasifier and the ambient temperature. It is observed that the higher the steam to carbon ratio that is achieved the more hydrogen and more power the plant is able to produce. Because of this, the exergy and energy efficiency of the system increases as the steam to carbon ratio increases as well. It is also observed that the system favors a lower ambient temperature for maximum exergy efficiency and hydrogen production.  相似文献   

6.
Exxon Research and Engineering Company is engaged in research and development on catalytic coal gasification (CCG) for the production of substitute natural gas (SNG). the catalysts being studied are the basic and weak acid salts of potassium. the use of a gasification catalyst allows the gasifier temperature to be reduced, reduces the tendency for swelling and agglomeration of caking coals and promotes gas phase methanation equilibrium. These features of the catalyst are utilized in a novel processing sequence which involves separation of product gas into methane (SNG) and a CO/H2 stream which is recycled to the gasifier. the predevelopment phase of research on this process concept was completed in early 1978 and included bench-scale research on catalyst recovery and kinetics, the operation of a 6 in diameter × 30 ft long fluid bed gasifier and supporting engineering studies. As part of the engineering programme, a conceptual design has been developed for a pioneer commercial CCG plant producing SNG from Illinois No. 6 bituminous coal. the paper reviews the status of research and development on the CCG programme and describes the conceptual design and economics for the commercial scale CCG plant.  相似文献   

7.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

8.
In this work, two biomass-to-hydrogen concepts are designed and their integration with a large European refinery is investigated. One concept is based on indirect, atmospheric steam gasification while the second is based on pressurized direct oxygen-steam-blown gasification. The technologies chosen for gas cleaning, upgrading and hydrogen separation also differ in the two concepts. Heat integration and poly-generation opportunities are identified by means of process integration tools and four system configurations are identified. These are compared in terms of energy and exergy performances and potential for reduction of fossil CO2 emissions at the refinery. It is found that the performance of the biomass-to-hydrogen concepts can be improved by up to 11% points in energy efficiency and 9% points in exergy efficiency. The design based on indirect gasification appears the most efficient according to both energy and exergy efficiencies. All configurations yield potential significant reductions of fossil CO2 emissions at the refinery.  相似文献   

9.
Results are reported of thermodynamic analyses of a biomass gasification unit in which sawdust is the biomass feed and the gasifying medium is either air or steam. Energy and exergy analyses are performed for the system and each of its components. A parametric study reveals the effect of design and operating parameters on the system's performance and energy and exergy efficiencies. The results show that the adiabatic temperature of biomass gasification significantly changes with the type of the gasifying medium. In addition, the exergy and energy efficiencies are observed to be higher when air is the gasifying medium rather than steam, while the system performance and exergy efficiencies are dependent on the moisture content of the feed biomass. The results are significant because they quantify the strong dependence of biomass gasification, which can be used for syngas or hydrogen production, on moisture content, and gasifying medium.  相似文献   

10.
An Aspen Plus model of biomass gasification with different gasifying agents has been developed. Due to lack of kinetic data, the developed model is based on Gibbs free energy minimization. The main objective of this study is to study the influence of gasifying agent (pure oxygen; oxygen-enriched air and air), gasification temperature and equivalence ratio (ER) on gas composition, gas lower heating value (LHV), and energy/exergy efficiencies. The developed model was validated with experimental data which was found to be in well agreement. Increase in gasification temperature led to a significant increase in H2 content. On the other hand, an increase in ER led to a significant reduction in H2, CO, and CH4 and a significant increase in CO2. Also, a gradual downward trend of exergy efficiency (EE) was found, as ER increased from 0.15 to 0.21, while it basically kept constant as the gasification temperature was varied.  相似文献   

11.
Biomass has great potential as a clean, renewable feedstock for producing modern energy carriers. This paper focuses on the process of biomass gasification, where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The gasifier is one of the least-efficient unit operations in the whole biomass-to-energy technology chain and an analysis of the efficiency of the gasifier alone can substantially contribute to the efficiency improvement of this chain. The purpose of this paper is to compare different types of biofuels for their gasification efficiency and benchmark this against gasification of coal. In order to quantify the real value of the gasification process exergy-based efficiencies, defined as the ratio of chemical and physical exergy of the synthesis gas to chemical exergy of a biofuel, are proposed in this paper. Biofuels considered include various types of wood, vegetable oil, sludge, and manure. In this study, exergetic efficiencies are evaluated for an idealized gasifier in which chemical equilibrium is reached, ashes are not considered and heat losses are neglected. The gasification efficiencies are evaluated at the carbon-boundary point, where exactly enough air is added to avoid carbon formation and achieve complete gasification. The cold-gas efficiency of biofuels was found to be comparable to that of coal. It is shown that the exergy efficiencies of biofuels are lower than the corresponding energetic efficiencies. For liquid biofuels, such as sludge and manure, gasification at the optimum point is not possible, and exergy efficiency can be improved by drying the biomass using the enthalpy of synthesis gas.  相似文献   

12.
The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 °C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 °C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel.  相似文献   

13.
In this paper, waste tires are comparatively studied and assessed as a feedstock relative to coal and coconut char. An Integrated Gasification Combined Cycle (IGCC) is developed by using the Aspen Plus to assess the suggested gasification feedstocks based on their carbon dioxide emissions and hydrogen production to feed rate ratios. Note that many tires are disposed of every year in North America and are stockpiled in the masses in landfills, which cause various environmental implications. In the present study, it is found that waste tires as a feedstock for gasification are a viable solution to this ever-rising problem. The hydrogen production to feed rate ratio is found to be 0.158 which is very competitive with high-quality coals and coconut char. The net power production from the combined cycle when tires are used as the feedstock for the gasifier is found to be 11.1kW. The optimal hydrogen production to feed rate ratio is also achieved at the maximum net power production rate. The energy and exergy efficiencies of the overall system are found to be 55.01% and 52.31% when the waste tires are used as a feedstock.  相似文献   

14.
Biomass gasification is a promising option for the sustainable production of hydrogen rich gas. Five different commercial or pilot scale gasification systems are considered for the design of a hydrogen production plant that generates almost pure hydrogen. For each of the gasification technique models of two different hydrogen production plants are developed in Cycle-Tempo: one plant with low temperature gas cleaning (LTGC) and the other with high temperature gas cleaning (HTGC). The thermal input of all plants is 10 MW of biomass with the same dry composition. An exergy analysis of all processes has been made. The processes are compared on their thermodynamic performance (hydrogen yield and exergy efficiency). Since the heat recovery is not incorporated in the models, two efficiencies are calculated. The first one is calculated for the case that all residual heat can be applied, the case with ideal heat recovery, and the other is calculated for the case without heat recovery. It is expected that in real systems only a part of the residual heat can be used. Therefore, the actual value will be in between these calculated values. It was found that three processes have almost the same performance: The Battelle gasification process with LTGC, the FICFB gasification process with LTGC, and the Blaue Turm gasification process with HTGC. All systems include further processing of the cleaned gas from biomass gasification into almost pure hydrogen. The calculated exergy efficiencies are, respectively, 50.69%, 45.95%, and 50.52% for the systems without heat recovery. The exergy efficiencies of the systems with heat recovery are, respectively, 62.79%, 64.41%, and 66.31%. The calculated hydrogen yields of the three processes do not differ very much. The hydrogen yield of the Battelle LTGC process appeared to be 0.097 kg (kg(dry biomass))−1, for the FICFB LTGC process a yield of 0.096 kg (kg(dry biomass))−1 was found, and for the Blaue Turm HTGC 0.106 kg (kg(dry biomass))−1.  相似文献   

15.
Back in 1970s and 1980s, cogeneration plants in sugarcane mills were primarily designed to consume all bagasse, and produce steam and electricity to the process. The plants used medium pressure steam boilers (21 bar and 300 °C) and backpressure steam turbines. Some plants needed also an additional fuel, as the boilers were very inefficient. In those times, sugarcane bagasse did not have an economic value, and it was considered a problem by most mills. During the 1990s and the beginning of the 2000s, sugarcane industry faced an open market perspective, thus, there was a great necessity to reduce costs in the production processes. In addition, the economic value of by-products (bagasse, molasses, etc.) increased, and there was a possibility of selling electricity to the grid. This new scenario led to a search for more advanced cogeneration systems, based mainly on higher steam parameters (40–80 bar and 400–500 °C). In the future, some authors suggest that biomass integrated gasification combined cycles are the best alternative to cogeneration plants in sugarcane mills. These systems might attain 35–40% efficiency for the power conversion. However, supercritical steam cycles might also attain these efficiency values, what makes them an alternative to gasification-based systems. This paper presents a comparative thermoeconomic study of these systems for sugarcane mills. The configurations studied are based on real systems that could be adapted to biomass use. Different steam consumptions in the process are considered, in order to better integrate these configurations in the mill.  相似文献   

16.
A novel integrated renewable-based energy system for production of synthetic diesel is proposed and simulated in this study. This system merges solid oxide electrolyser (SOE), entrained gasification (EG) and Fischer-Tropsch (FT) technologies. Two case scenarios are considered here. In the first case, the electrolyser unite produce syngas through co-electrolysis of steam and carbon dioxide, while in the second case only steam is electrolyzed. The effects of SOEC and EG operating pressure and temperatures on the system performance in each case are investigated and compared. It is shown that the operating condition of electrolyser subsystem has a more considerable effect on the performance of the integrated system as compared to the gasification subsystem. Also waste heat recovery results in about 43 and 2 percentage point increase in energy and exergy efficiency, respectively. It is also shown that internal recovering of oxygen has the best effect on the system performance.  相似文献   

17.
Gasification is considered as a key technology for the use of biomass. In order to promote this technology in the future, advanced, cost-effective, and highly efficient gasification processes and systems are required. This paper provides a detailed review on new concepts in biomass gasification.Concepts for process integration and combination aim to enable higher process efficiencies, better gas quality and purity, and lower investment costs. The recently developed UNIQUE gasifier which integrates gasification, gas cleaning and conditioning in one reactor unit is an example for a promising process integration. Other interesting concepts combine pyrolysis and gasification or gasification and combustion in single controlled stages. An approach to improve the economic viability and sustainability of the utilization of biomass via gasification is the combined production of more than one product. Polygeneration strategies for the production of multiple energy products from biomass gasification syngas offer high efficiency and flexibility.  相似文献   

18.
This paper analyzes the thermodynamic performance of IGCC power plants based on an air-blown gasifier. A preliminary computational model for a lab-scale gasifier was calibrated on experimental data available in open literature, as a first step for the modeling of a large-scale MHI-type air-blown demonstration gasifier. The latter was analyzed by a parametric analysis, carried out by varying the gasification temperature and the heat transferred to the membrane walls. In agreement with data from MHI, the power balance of the air-blown gasifier suggests that the cold gas efficiency is similar to the one of oxygen-blown gasifiers, even though energy flows are quite different in the two gasification technologies.  相似文献   

19.
More efficient biomass gasification via torrefaction   总被引:1,自引:0,他引:1  
Wood torrefaction is a mild pyrolysis process that improves the fuel properties of wood. At temperatures between 230 and 300 °C, the hemicellulose fraction of the wood decomposes, so that torrefied wood and volatiles are formed. Mass and energy balances for torrefaction experiments at 250 and 300 °C are presented. Advantages of torrefaction as a pre-treatment prior to gasification are demonstrated. Three concepts are compared: air-blown gasification of wood, air-blown gasification of torrefied wood (both at a temperature of 950 °C in a circulating fluidized bed) and oxygen-blown gasification of torrefied wood (at a temperature of 1200 °C in an entrained flow gasifier), all at atmospheric pressure. The overall exergetic efficiency of air-blown gasification of torrefied wood was found to be lower than that of wood, because the volatiles produced in the torrefaction step are not utilized. For the entrained flow gasifier, the volatiles can be introduced into the hot product gas stream as a ‘chemical quench’. The overall efficiency of such a process scheme is comparable to direct gasification of wood, but more exergy is conserved in as chemical exergy in the product gas (72.6% versus 68.6%). This novel method to improve the efficiency of biomass gasification is promising; therefore, practical demonstration is recommended.  相似文献   

20.
Hydrogen production using thermal energy, derived from nuclear reactor, can achieve large-scale hydrogen production and solve various energy problems. The concept of hydrogen and electricity cogeneration can realize the cascade and efficient utilization of high-temperature heat derive for very high temperature gas-cooled reactors (VHTRs). High-quality heat is used for the high-temperature processes of hydrogen production, and low-quality heat is used for the low-temperature processes of hydrogen production and power generation. In this study, two hydrogen and electricity cogeneration schemes (S1 and S2), based on the iodine-sulfur process, were proposed for a VHTR with the reactor outlet temperature of 950 °C. The thermodynamic analysis model was established for the hydrogen and electricity cogeneration. The energy and exergy analysis were conducted on two cogeneration systems. The energy analysis can reflect the overall performance of the systems, and the exergy analysis can reveal the weak parts of the systems. The analysis results show that the overall hydrogen and electricity efficiency of S1 is higher than that of S2, which are 43.6% and 39.2% at the hydrogen production rate of 100 mol/s, respectively. The steam generators is the components with the highest exergy loss coefficient, which are the key components for improving the system performance. This study presents a theoretical foundation for the subsequent optimization of hydrogen and electricity cogeneration coupled with VHTRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号