首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nonribosomal peptides synthetases (NRPSs), which are multifunctional mega‐enzymes producing many biologically active metabolites, are ideal targets for enzyme engineering. NRPS adenylation domains play a critical role in selecting/activating the amino acids to be transferred to downstream NRPS domains in the biosynthesis of natural products. Both monofunctional and bifunctional A domains interrupted with an auxiliary domain are found in nature. Here, we show that a bifunctional interrupted A domain can be uninterrupted by deleting its methyltransferase auxiliary domain portion to make an active monofunctional enzyme. We also demonstrate that a portion of an auxiliary domain with almost no sequence identity to the original auxiliary domain can be insert into naturally interrupted A domain to develop a new active bifunctional A domain with increased substrate profile. This work shows promise for the creation of new interrupted A domains in engineered NRPS enzymes.  相似文献   

3.
4.
Out of the green! Precursor‐directed biosynthesis allowed for the production of new nostocarboline derivatives that display phytotoxic and algicidal properties—in a phototrophic organism. The mechanism of action includes downregulation of photosynthesis, as demonstrated by chlorophyll‐a fluorescence imaging.

  相似文献   


5.
Myxobacteria are gliding bacteria that belong to the δ‐Proteobacteria and are known for their unique biosynthetic capabilities. Among myxobacteria, Nannocystis spp. are most closely related to marine myxobacteria and their secondary metabolism has hardly been investigated. Phenylnannolones A ( 1 ), B ( 2 ) and C ( 3 ) were obtained from a culture of Nannocystis exedens that was isolated from the intertidal region of Crete. Compound 1 had inhibitory activity toward the ABCB1 gene product P‐glycoprotein and reversed daunorubicin resistance in cultured cancer cells. Phenylnannolone A has an unusual structural architecture; it is composed of an ethyl‐substituted polyene chain linked to a pyrone moiety on one side and to a phenyl ring on the other. The investigation of the biosynthesis with labelled precursors revealed acetate, butyrate and phenylalanine as building blocks for 1 . The labelling pattern suggested novel biochemical reactions for the biosynthesis of the starter unit.  相似文献   

6.
Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6‐methylsalicylic acid (6‐MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully 13C‐labeled 6‐MSA revealed that 6‐MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi‐aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6‐MSA.  相似文献   

7.
The complex secondary metabolite anachelin, isolated from the freshwater cyanobacterium Anabaena cylindrica, is believed to act as siderophore, facilitating iron uptake. Its structure is characterized by a fascinating blend of polyketide, peptide, and alkaloid fragments. In particular, the tetrahydroquinolinium-derived chromophore is unique among natural products, and its biosynthesis is unknown. We propose a hypothesis for the biogenesis of the anachelin chromophore starting from a C-terminally bound L-Tyr residue. It is proposed that this amino acid is reductively aminated, methylated, and hydroxylated. Oxidation of this catechol diamine substrate by a tyrosinase would lead to an o-quinone, which would react by intramolecular aza-annulation and tautomerization to give the anachelin chromophore. In order to evaluate this hypothesis, a model substrate related to the proposed biogenetic precursor was prepared. It was shown that the enzyme tyrosinase is able to transform this substrate into an anachelin chromophore derivative, which corroborates the biogenetic hypothesis. In order to gain further insight into the mechanism of this transformation, we performed spectrophotometric reaction monitoring, allowing the formation of the expected product to be observed. In addition, a rise in absorption at around 250 nm might be due to the presence of a spiro five-membered ring intermediate resulting from an alternative 1,4-addition to the o-quinone. Lastly, we were able to show that the action of tyrosinase on this substrate follows Michaelis-Menten kinetics (k(cat)=123 s(-1) and K(m)=8.66 mM). Interestingly, the catalytic efficiency is decreased only by a factor of 30 relative to the natural substrate L-DOPA.  相似文献   

8.
9.
Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin—lyngbyatoxin A—and its biosynthetic intermediates by heterologous expression of the Streptomyces‐derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk.  相似文献   

10.
The unique five‐membered aminocyclitol core of the antitumor antibiotic pactamycin originates from d ‐glucose, so unprecedented enzymatic modifications of the sugar intermediate are involved in the biosynthesis. However, the order of the modification reactions remains elusive. Herein, we examined the timing of introduction of an amino group into certain sugar‐derived intermediates by using recombinant enzymes that were encoded in the pactamycin biosynthesis gene cluster. We found that the NAD+‐dependent alcohol dehydrogenase PctP and pyridoxal 5′‐phosphate dependent aminotransferase PctC converted N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophonone into 3′‐amino‐3′‐deoxy‐N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophenone. Further, N‐acetyl‐d ‐glucosaminyl‐3‐aminophenyl‐β‐oxopropanoic acid ethyl ester was converted into the corresponding 3′‐amino derivative. However, PctP did not oxidize most of the tested d ‐glucose derivatives, including UDP‐GlcNAc. Thus, modification of the GlcNAc moiety in pactamycin biosynthesis appears to occur after the glycosylation of aniline derivatives.  相似文献   

11.
Thienodolin (THN) features a tricyclic indole‐S‐hetero scaffold that encompasses two unique carbon–sulfur bonds. Although its biosynthetic gene cluster has been recently identified in Streptomyces albogriseolus, the essential enzymes for the formation of C?S bonds have been relatively unexplored. Here, we isolated and characterized a new biosynthetic gene cluster from Streptomyces sp. FXJ1.172. Heterologous expression, systematic gene inactivation, and in vitro biochemical characterization enable us to determine the minimum set of genes for THN synthesis, and an aminotransferase (ThnJ) for catalyzing the downstream conversion of tryptophan chlorination. In addition, we evaluated (and mainly excluded) a previously assumed pivotal intermediate by feeding experiments. With these results, we narrowed down four enzymes (ThnC–F) that are responsible for the two unprecedented C?S bond formations. Our study provides a solid basis for further unraveling of the unique C?S mechanisms.  相似文献   

12.
13.
Within the framework of our effort to discover new antibiotics from pseudomonads, pseudopyronines A and B were isolated from the plant‐derived Pseudomonas putida BW11M1. Pseudopyronines are 3,6‐dialkyl‐4‐hydroxy‐2‐pyrones and displayed high in vitro activities against several human pathogens, and in our hands also towards the plant pathogen Pseudomonas savastanoi. Here, the biosynthesis of pseudopyronine B was studied by a combination of feeding experiments with isotopically labeled precursors, genomic sequence analysis, and gene deletion experiments. The studies resulted in the deduction of all acetate units and revealed that the biosynthesis of these α‐pyrones occurs with a single PpyS‐homologous ketosynthase. It fuses, with some substrate flexibility, a 3‐oxo‐fatty acid and a further unbranched saturated fatty acid, both of medium chain‐length and provided by primary metabolism.  相似文献   

14.
Three analogues of amythiamicin D, which differ in the substitution pattern at the methine group adjacent to C2 of the thiazole ring C, were prepared by de novo total synthesis. In amythiamicin D, this carbon atom is (S)‐isopropyl substituted. Two of the new analogues carry a hydroxymethyl in place of the isopropyl group, one at an S‐ (compound 3 a ) and the other at an R‐configured stereogenic center ( 3 b ). The third analogue, 3 c , contains a benzyloxymethyl group at an S‐configured stereogenic center. Compounds 3 b and 3 c showed no inhibitory effect toward various bacterial strains, nor did they influence the translation of firefly luciferase. In stark contrast, compound 3 a inhibited the growth of Gram‐positive bacteria Staphylococcus aureus (strains NCTC and Mu50) and Listeria monocytogenes EGD. In the firefly luciferase assay it proved more potent than amythiamicin D, and rescue experiments provided evidence that translation inhibition is due to binding to the bacterial elongation factor Tu (EF‐Tu). The results were rationalized by structural investigations and by molecular dynamics simulations of the free compounds in solution and bound to the EF‐Tu binding site. The low affinity of compound 3 b was attributed to the absence of a critical hydrogen bond, which stabilizes the conformation required for binding to EF‐Tu. Compound 3 c was shown not to comply with the binding properties of the binding site.  相似文献   

15.
Macrolide‐pipecolate natural products, such as rapamycin ( 1 ) and FK‐506 ( 2 ), are renowned modulators of FK506‐binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB‐M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A–D ( 4 – 7 ) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L ‐lysine into the L ‐pipecolic acid incorporated into 4 and 5 . Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP‐binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal.  相似文献   

16.
Despite increasing evidence for biosynthetic connections between flower pigments and volatile compounds, examples of such relationships in polymorphic plant species remains limited. Herein, color–scent associations in flowers from Papaver nudicaule (Papaveraceae) have been investigated. The spectral reflectance and scent composition of flowers of four color cultivars was determined. We found that pigments and volatiles occur in specific combinations in flowers of P. nudicaule. The presence of indole in the bouquets is strongly associated with the occurrence of yellow pigments called nudicaulins, for which indole is one of the final biosynthetic precursors. Whereas yellow flowers emit an excess of indole, orange flowers consume it during nudicaulin production and lack the substance in their bouquet. By using the honeybee, Apis mellifera, evaluations were made on how color and scent affect the discrimination of these flowers by pollinators. Honeybees were able to discriminate artificial odor mixtures resembling those of the natural flower odors. Bees trained with stimuli combining colors and odors showed an improved discrimination performance. The results indicate that the indole moiety of nudicaulins and emitted indole might be products of the same biochemical pathway. We propose that conserved pathways account for the evolution of color–scent associations in P. nudicaule and that these associations positively affect flower constancy of pollinators.  相似文献   

17.
The reported acetate‐derived labelling of the fungal naphthalene γ‐pyrone fonsecin, two streptomycete dodecaketide αpyrones TW93f and TW93g, and the streptomycete phenanthraquinones piloquinone, murayaquinone and haloquinone appear to be exceptions to the generalisation that fungi and streptomycetes produce fused‐ring aromatic polyketides by different modes of cyclisation. A review of their 1) originally assigned formulae, 2) [13C2]acetate‐derived labelling patterns, and 3) modes of cyclisation leads to the recognition of feasible alternative chemical structures or biosynthetic pathways, which are in accord with the originally proposed classification system.  相似文献   

18.
Cyclin‐dependent kinases (CDKs) control many cellular processes and are considered important therapeutic targets. Large collections of inhibitors targeting CDK active sites have been discovered, but their use in chemical biology or drug development has been often hampered by their general lack of specificity. An alternative approach to develop more specific inhibitors is targeting protein interactions involving CDKs. CKS proteins interact with some CDKs and play important roles in cell division. We discovered two small‐molecule inhibitors of CDK–CKS interactions. They bind to CDK2, do not inhibit its enzymatic activity, inhibit the proliferation of tumor cell lines, induce an increase in G1 and/or S‐phase cell populations, and cause a decrease in CDK2, cyclin A, and p27Kip1 levels. These molecules should help decipher the complex contributions of CDK–CKS complexes in the regulation of cell division, and they might present an interesting therapeutic potential.  相似文献   

19.
The biosynthetic gene cluster for the plant growth‐regulating compound thienodolin was identified in and cloned from the producer organism Streptomyces albogriseolus MJ286‐76F7. Sequence analysis of a 27 kb DNA region revealed the presence of 21 ORFs, 14 of which are involved in thienodolin biosynthesis. Three insertional inactivation mutants were generated in the sequenced region to analyze their involvement in thienodolin biosynthesis and to functionally characterize specific genes. The gene inactivation experiments together with enzyme assays with enzymes obtained by heterologous expression and feeding studies showed that the first step in thienodolin biosynthesis is catalyzed by a tryptophan 6‐halogenase and that the last step is the formation of a carboxylic amide group catalyzed by an amidotransferase. The results led to a hypothetical model for thienodolin biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号