首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the scaffolding protein MO25 to SPAK and OSR1 protein kinases, which regulate ion homeostasis, causes increases of up to 100‐fold in their catalytic activity. Various animal models have shown that the inhibition of SPAK and OSR1 lowers blood pressure, and so here we present a new indirect approach to inhibiting SPAK and OSR1 kinases by targeting their protein partner MO25. To explore this approach, we developed a fluorescent polarisation assay and used it in screening of a small in‐house library of ≈4000 compounds. This led to the identification of one compound—HK01—as the first small‐molecule inhibitor of the MO25‐dependent activation of SPAK and OSR1 in vitro. Our data confirm the feasibility of targeting this protein–protein interaction by small‐molecule compounds and highlights their potential to modulate ion co‐transporters and thus cellular electrolyte balance.  相似文献   

2.
SPAK and OSR1 are two protein kinases that play critical roles in regulating ion homeostasis. They are activated under osmotic stress through phosphorylation by their upstream WNK kinases at a conserved threonine site on their T-loops. Additionally, WNK kinases phosphorylate SPAK and OSR1 at a highly conserved serine residue on their S-motif, the function of which remains elusive. Using affinity pull down and mass spectrometry, we identified the E3 ubiquitin ligase complex Cullin 4-DDB1-WDR3/WDR6 as a binder to OSR1 kinase in a SPAK/OSR1 S-motif phosphorylation-dependent manner. This binding was found to be compromised by S-motif phosphorylation following osmotic stress. Using proteasomal and neddylation inhibitors, we subsequently showed that OSR1 ubiquitylation was abolished under osmotic stress when its S-motif is phosphorylated. These results provide the first example of an E3 ubiquitin ligase system that binds the OSR1 kinase and, thus, links the CRL4 complex to ion homeostasis.  相似文献   

3.
Hypertension is an important target for drug discovery. We have focused on the with-no-lysine kinase (WNK)-oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-alanine-rich protein kinase (SPAK)-NaCl cotransporter (NCC) signal cascade as a potential target, and we previously developed a screening system for inhibitors of WNK-OSR1/SPAK-NCC signaling. Herein we used this system to examine the structure-activity relationship (SAR) of salicylanilide derivatives as SPAK kinase inhibitors. Structural design and development based on our previous hit compound, aryloxybenzanilide derivative 2 , and the veterinary anthelmintic closantel ( 3 ) led to the discovery of compound 10 a as a potent SPAK inhibitor with reduced toxicity. Compound 10 a decreased the phosphorylation level of NCC in mouse kidney in vivo, and appears to be a promising lead compound for a new class of antihypertensive drugs.  相似文献   

4.
Malaria, an infectious disease caused by eukaryotic parasites of the genus Plasmodium, afflicts hundreds of millions of people every year. Both the parasite and its host utilize protein kinases to regulate essential cellular processes. Bioinformatic analyses of parasite genomes predict at least 65 protein kinases, but their biological functions and therapeutic potential are largely unknown. We profiled 1358 small‐molecule kinase inhibitors to evaluate the role of both the human and the malaria kinomes in Plasmodium infection of liver cells, the parasites' obligatory but transient developmental stage that precedes the symptomatic blood stage. The screen identified several small molecules that inhibit parasite load in liver cells, some with nanomolar efficacy, and each compound was subsequently assessed for activity against blood‐stage malaria. Most of the screening hits inhibited both liver‐ and blood‐stage malaria parasites, which have dissimilar gene expression profiles and infect different host cells. Evaluation of existing kinase activity profiling data for the library members suggests that several kinases are essential to malaria parasites, including cyclin‐dependent kinases (CDKs), glycogen synthase kinases, and phosphoinositide‐3‐kinases. CDK inhibitors were found to bind to Plasmodium protein kinase 5, but it is likely that these compounds target multiple parasite kinases. The dual‐stage inhibition of the identified kinase inhibitors makes them useful chemical probes and promising starting points for antimalarial development.  相似文献   

5.
Intrinsically disordered regions (IDRs) are preferred sites for post‐translational modifications essential for regulating protein function. The enhanced local mobility of IDRs facilitates their observation by NMR spectroscopy in vivo. Phosphorylation events can occur at multiple sites and respond dynamically to changes in kinase–phosphatase networks. Here we used real‐time NMR spectroscopy to study the effect of kinases and phosphatases present in Xenopus oocytes and egg extracts on the phosphorylation state of the “unique domain” of c‐Src. We followed the phosphorylation of S17 in oocytes, and of S17, S69, and S75 in egg extracts by NMR spectroscopy, MS, and western blotting. Addition of specific kinase inhibitors showed that S75 and S69 are phosphorylated by CDKs (cyclin‐dependent kinases) differently from Cdk1. Moreover, although PKA (cAMP‐dependent protein kinase) can phosphorylate S17 in vitro, this was not the major S17 kinase in egg extracts. Changes in PKA activity affected the phosphorylation levels of CDK‐dependent sites, thus suggesting indirect effects of kinase–phosphatase networks. This study provides a proof‐of‐concept of the use of real‐time in vivo NMR spectroscopy to characterize kinase/phosphatase effects on intrinsically disordered regulatory domains.  相似文献   

6.
7.
Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.  相似文献   

8.
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.  相似文献   

9.
Protein kinases are highly dynamic and complex molecules. Here we present high‐pressure and relaxation studies of the activated p38α mitogen‐activated protein kinase (MAPK). p38α plays a central role in inflammatory diseases such as rheumatoid arthritis and is therefore a highly attractive pharmaceutical target. The combination of high pressure and NMR spectroscopy allowed for a detailed per‐residue based assessment of the structural plasticity of p38α and the accessibility of low‐lying excited‐energy conformations throughout the kinase structure. Such information is uniquely accessible through the combination of liquid‐state NMR and high pressure and is of considerable value for the drug discovery process. The interactions of p38α and DFG‐in and DFG‐out ligands were studied under the application of high pressure, and we demonstrate how we can alter kinase dynamics by pressure in a similar way to what has previously only been observed by ligand binding. Pressure is shown to be a mild and efficient tool for manipulation of intermediate‐timescale dynamics.  相似文献   

10.
As part of our research projects to identify new chemical entities of biological interest, we developed a synthetic approach and the biological evaluation of (7‐aryl‐1,5‐naphthyridin‐4‐yl)ureas as a novel class of Aurora kinase inhibitors for the treatment of malignant diseases based on pathological cell proliferation. 1,5‐Naphthyridine derivatives showed excellent inhibitory activities toward Aurora kinases A and B, and the most active compound, 1‐cyclopropyl‐3‐[7‐(1‐methyl‐1H‐pyrazol‐4‐yl)‐1,5‐naphthyridin‐4‐yl]urea ( 49 ), displayed IC50 values of 13 and 107 nM against Aurora kinases A and B, respectively. In addition, the selectivity toward a panel of seven cancer‐related protein kinases was highlighted. In vitro ADME properties were also determined in order to rationalize the difficulties in correlating antiproliferative activity with Aurora kinase inhibition. Finally, the good safety profile of these compounds imparts promising potential for their further development as anticancer agents.  相似文献   

11.
Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches. One of those approaches is photopharmacology, which uses light-controlled bioactive molecules to selectively activate drugs only at the intended space and time, thereby avoiding side effects outside of the irradiated area. Still, in the context of kinase inhibition, photopharmacology has thus far been rather unsuccessful in providing light-controlled drugs. Here, we present the discovery and optimisation of a photoswitchable inhibitor of casein kinase 1δ (CK1δ), important for the control of cell differentiation, circadian rhythm, DNA repair, apoptosis, and numerous other signalling processes. Varying the position at which the light-responsive azobenzene moiety has been introduced into a known CK1δ inhibitor, LH846, revealed the preferred regioisomer for efficient photo-modulation of inhibitory activity, but the photoswitchable inhibitor suffered from sub-optimal (photo)chemical properties. Replacement of the bis-phenyl azobenzene group with the arylazopyrazole moiety yielded a superior photoswitch with very high photostationary state distributions, increased solubility and a 10-fold difference in activity between irradiated and thermally adapted samples. The reasons behind those findings are explored with molecular docking and molecular dynamics simulations. Results described here show how the evaluation of privileged molecular architecture, followed by the optimisation of the photoswitchable unit, is a valuable strategy for the challenging design of the photoswitchable kinase inhibitors.  相似文献   

12.
Reversible protein kinase inhibitors that bind in the ATP cleft can be classified as type I or type II binders. Of these, type I inhibitors address the active form, whereas type II inhibitors typically lock the kinase in an inactive form. At the molecular level, the conformation of the flexible activation loop holding the key DFG motif controls access to the ATP site, thereby determining an active or inactive kinase state. Accordingly, type I and type II kinase inhibitors bind to so‐called DFG‐in or DFG‐out conformations, respectively. Based on our former study on highly selective platelet‐derived growth factor receptor β (PDGFRβ) pyrazin‐2‐one type I inhibitors, we expanded this scaffold toward the deep pocket, yielding the highly potent and effective type II inhibitor 5 (4‐[(4‐methylpiperazin‐1‐yl)methyl]‐N‐[3‐[[6‐oxo‐5‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazin‐3‐yl]methyl]phenyl]benzamide). In vitro characterization, including selectivity panel data from activity‐based assays (300 kinases) and affinity‐based assays (97 kinases) of these PDGFRβ type I ( 1 ; 5‐(4‐hydroxy‐3‐methoxy‐phenyl)‐3‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazin‐2‐one) and II ( 5 ) inhibitors showing the same pyrazin‐2‐one chemotype are compared. Implications are discussed regarding the data for selectivity and efficacy of type I and type II ligands.  相似文献   

13.
The elucidation of signalling pathways relies heavily upon the identification of protein kinase substrates. Recent investigations have demonstrated the efficacy of chemical genetics using ATP analogues and modified protein kinases for specific substrate labelling. Here we combine N(6) -(cyclohexyl)ATPγS with an analogue-sensitive cdk2 variant to thiophosphorylate its substrates and demonstrate a pH-dependent, chemoselective, one-step alkylation to facilitate the detection or isolation of thiophosphorylated peptides.  相似文献   

14.
The natural product staurosporine is a high‐affinity inhibitor of nearly all mammalian protein kinases. The labelling of staurosporine has proven effective as a means of generating protein kinase research tools. Most tools have been generated by acylation of the 4′‐methylamine of the sugar moiety of staurosporine. Herein we describe the alkylation of this group as a first step to generate a fluorescently labelled staurosporine. Following alkylation, a polyethylene glycol linker was installed, allowing subsequent attachment of fluorescein. We report that this fluorescein–staurosporine conjugate binds to cAMP‐dependent protein kinase in the nanomolar range. Furthermore, its binding can be antagonised with unmodified staurosporine as well as ATP, indicating it targets the ATP binding site in a similar fashion to native staurosporine. This reagent has potential application as a screening tool for protein kinases of interest.  相似文献   

15.
Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.  相似文献   

16.
Peifer C  Alessi DR 《ChemMedChem》2008,3(12):1810-1838
Signal transduction of many growth factors and oncogenes is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1), a master regulator of a number of downstream signal protein kinase cascades. Hence, PDK1 represents a convergence point for receptor tyrosine kinase and cytokine-mediated pathways for the regulation of vital cell processes such as cell survival and proliferation. Pathological upregulation of PDK1 signalling due to constitutive growth factor receptor activation and/or PTEN (phosphatase and tensin homologue) mutations significantly triggers downstream signalling, e.g. PKB/Akt, which subsequently promote proliferative events such as tumour invasiveness, angiogenesis, and progression. Consistent with this, a mouse model expressing low levels of PDK1 is protected from tumourigenesis resulting from loss of PTEN. Because more than 50 % of all human cancers possess significant overstimulation of the PDK1 signalling pathway, inhibition of this protein kinase by small molecules is predicted to result in effective inhibition of cancer cell proliferation and thus be therapeutically beneficial. Various classes of small-molecule PDK1 inhibitors have been published in patents and papers. Herein we present for the first time a comprehensive collection of small molecules reported to interact with PDK1, and we refer to their biological characterisation in terms of activity and selectivity for PDK1.  相似文献   

17.
Interference from endogenous signaling enzymes represents a major hurdle for building orthogonal signaling cascades inside cells, particularly among closely related isoforms within an enzyme family. Here, we employed a genetically encoded chemical decaging strategy to build orthogonally activated kinase isoforms, with the endogenous counterparts temporally disabled by an extracellularly delivered bacterial effector. This approach eliminated any potential interference from other kinase isoforms as well as endogenous kinases, which allowed the specific, gain‐of‐function report of mitogen‐activated protein kinase kinase 1 (MEK1) activity as opposed to MEK2 with high temporal resolution. Our study dissected the distinct enzymatic activity, feedback regulation and signal outputs between these closely related kinase isoforms.  相似文献   

18.
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.  相似文献   

19.
Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI‐MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3′IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI‐MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3′IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z′‐factors of 0.55 for APH3′IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase‐directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non‐selective inhibitor following mixture deconvolution.  相似文献   

20.
The atypical protein kinase haspin is a key player in mitosis by catalysing the phosphorylation of Thr3 in histone H3, and thus ensuring the normal function of the chromosomal passenger complex. Here, we report the development of bisubstrate‐analogue inhibitors targeting haspin. The compounds were constructed by linking 5‐iodotubercidin to the N terminus of histone H3 peptide. The new conjugates show high affinity (sub‐nanomolar KD) towards haspin as well as slow kinetics of association and dissociation (residence time of several hours). This reflects a unique binding mode and translated into improved selectivity. The latter was confirmed in a biochemical binding/displacement assay with a panel of ten protein kinases, in a thermal shift assay with off‐targets of 5‐iodotubercidin (adenosine kinase and the Cdc2‐like kinase family) and in assay with spiked HeLa cell lysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号