首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection by Mycobacterium tuberculosis causes tuberculosis, a disease characterized by alteration of host innate and adaptive immunity. These processes are mediated by a series of bacterial biomolecules, among which phenolic glycolipids (PGLs) and the related p‐hydroxybenzoic acid derivatives have been suggested to play important roles. To probe the importance of structural features of these glycans on cytokine modulation, we synthesized three M. tuberculosis PGL analogues ( 1 – 3 ), which differ from the native glycoconjugates by possessing a simplified lipid algycone. The ability of 1 – 3 to modulate the release of proinflammatory cytokines (TNF‐α, IL‐1β, IL‐6, MCP‐1) and nitric oxide (NO) was evaluated. None of the compounds stimulated the secretion of these signalling molecules. However, all showed a Toll‐like Receptor 2‐mediated, concentration‐dependent inhibition profile that was related to the methylation pattern on the glycan.  相似文献   

2.
Ageing is accompanied by the inevitable changes in the function of the immune system. It provides increased susceptibility to chronic infections that have a negative impact on the quality of life of older people. Therefore, rejuvenating the aged immunity has become an important research and therapeutic goal. Yolkin, a polypeptide complex isolated from hen egg yolks, possesses immunoregulatory and neuroprotective activity. Considering that macrophages play a key role in pathogen recognition and antigen presentation, we evaluated the impact of yolkin on the phenotype and function of mouse bone marrow-derived macrophages of the BMDM cell line. We determined yolkin bioavailability and the surface co-expression of CD80/CD86 using flow cytometry and IL-6, IL-10, TGF-β and iNOS mRNA expression via real-time PCR. Additionally, the impact of yolkin on the regulation of cytokine expression by MAPK and PI3K/Akt kinases was determined. The stimulation of cells with yolkin induced significant changes in cell morphology and an increase in CD80/CD86 expression. Using pharmaceutical inhibitors of ERK, JNK and PI3K/Akt, we have shown that yolkin is able to activate these kinases to control cytokine mRNA expression. Our results suggest that yolkin is a good regulator of macrophage activity, priming mainly the M1 phenotype. Therefore, it is believed that yolkin possesses significant therapeutic potential and represents a promising possibility for the development of novel immunomodulatory medicine.  相似文献   

3.
Chang HH  Chen CS  Lin JY 《Lipids》2008,43(6):499-506
To evaluate the anti-inflammatory effects of different dietary oils on ovalbumin-sensitized and -challenged mice. Experimental BALB/c mice were fed with different diets containing 5% corn oil [rich in linoleic acid, 18:2n-6 polyunsaturated fatty acids (PUFA), as a control diet], 5% perilla oil (rich in alpha-linolenic acid, 18:3n-3 PUFA) or 5% compound oil containing 50% corn oil and 50% perilla oil, for 5 consecutive weeks. The leukocyte count, inflammatory mediators, and cytokine levels, including proinflammatory and Th1/Th2 cytokines in the bronchoalveolar lavage fluid (BALF) from the mice were determined. The results showed that 5% compound oil administration significantly (P < 0.05) decreased eosinophilic infiltration. Dietary perilla oil could not significantly (P > 0.05) decrease the eosinophil accumulation or the secretions of inflammatory mediators such as prostaglandin E2 (PGE2), histamine, nitric oxide and eotaxin. However, dietary perilla oil significantly (P < 0.05) reduced proinflammatory cytokine (TNF-alpha, IL-1beta and IL-6) and Th1 cytokine (IFN-gamma and IL-2) production. The production of Th2 cytokine IL-10, but not IL-4 and IL-5, was also significantly inhibited by perilla oil administration. The results suggest that dietary perilla oil might alleviate inflammation via decreasing the secretion of pro-inflammatory cytokines in BALF, but failed to regulate the Th1/Th2 balance toward Th1 pole during the Th2-skewed allergic airway inflammation.  相似文献   

4.
5.
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.  相似文献   

6.
Inflammatory diseases are the focus of several clinical studies, due to limitations and serious side effects of available therapies. Plant-based drugs (e.g., salicylic acid, morphine) have become landmarks in the pharmaceutical field. Therefore, we investigated the immunomodulatory effects of flowers, leaves, and roots from Echinacea purpurea. Ethanolic (EE) and dichloromethanolic extracts (DE) were obtained using the Accelerated Solvent Extractor and aqueous extracts (AE) were prepared under stirring. Their chemical fingerprint was evaluated by liquid chromatography–high resolution mass spectrometry (LC-HRMS). The pro- and anti-inflammatory effects, as well as the reduction in intracellular reactive oxygen and nitrogen species (ROS/RNS), of the different extracts were evaluated using non-stimulated and lipopolysaccharide-stimulated macrophages. Interestingly, AE were able to stimulate macrophages to produce pro-inflammatory cytokines (tumor necrosis factor -TNF-α, interleukin -IL-1β, and IL-6), and to generate ROS/RNS. Conversely, under an inflammatory scenario, all extracts reduced the amount of pro-inflammatory mediators. DE, alkylamides-enriched extracts, showed the strongest anti-inflammatory activity. Moreover, E. purpurea extracts demonstrated generally a more robust anti-inflammatory activity than clinically used anti-inflammatory drugs (dexamethasone, diclofenac, salicylic acid, and celecoxib). Therefore, E. purpurea extracts may be used to develop new effective therapeutic formulations for disorders in which the immune system is either overactive or impaired.  相似文献   

7.
In mycobacterial infections, the number of cells from two newly discovered subpopulations of CD3+ myeloid cells are increased at the infection site; one type expresses the T cell receptor (CD3+TCRαβ+) and the other does not (CD3+TCRαβ). The role of Mycobacterium tuberculosis (Mtb) virulence in generating these subpopulations and the ability of these cells to migrate remains unclear. In this study, monocyte-derived macrophages (MDMs) infected in vitro with either a virulent (H37Rv) or an avirulent (H37Ra) Mtb strain were phenotypically characterized based on three MDM phenotypes (CD3, CD3+TCRαβ+, and CD3+TCRαβ); then, their migration ability upon Mtb infection was evaluated. We found no differences in the frequency of CD3+ MDMs at 24 h of infection with either Mtb strain. However, H37Rv infection increased the frequency of CD3+TCRαβ+ MDMs at a multiplicity of infection of 1 and altered the expression of CD1b, CD1c, and TNF on the surface of cells from both the CD3+ MDM subpopulations; it also modified the expression of CCR2, CXCR1, and CCR7, thus affecting CCL2 and IL-8 levels. Moreover, H37Rv infection decreased the migration ability of the CD3 MDMs, but not CD3+ MDMs. These results confirm that the CD3+ macrophage subpopulations express chemokine receptors that respond to chemoattractants, facilitating cell migration. Together, these data suggest that CD3+ MDMs are a functional subpopulation involved in the immune response against Mtb.  相似文献   

8.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.  相似文献   

9.
10.
The urgent need for new antibiotics poses a challenge to target un(der)exploited vital cellular processes. Thymidylate biosynthesis is one such process due to its crucial role in DNA replication and repair. Thymidylate synthases (TS) catalyze a crucial step in the biosynthesis of thymidine 5‐triphosphate (TTP), an elementary building block required for DNA synthesis and repair. To date, TS inhibitors have only been successfully applied in anticancer therapy due to their lack of specificity for antimicrobial versus human enzymes. However, the discovery of a new family of TS enzymes (ThyX) in a range of pathogenic bacteria that is structurally and biochemically different from the “classic” TS (ThyA) has opened the possibility to develop selective ThyX inhibitors as potent antimicrobial drugs. Here, the interaction of the known inhibitor 5‐(3‐octanamidoprop‐1yn‐1yl)‐2′‐deoxyuridine‐5′‐monophosphate ( 1 ) with Mycobacterium tuberculosis ThyX enzyme is explored using molecular modeling starting from published crystal structures, with further confirmation through NMR experiments. While the deoxyuridylate (dUMP) moiety of compound 1 occupies the cavity of the natural substrate in ThyX, the rest of the ligand (the “5‐alkynyl tail”) extends to the outside of the enzyme between two of its four subunits. The hydrophobic pocket that accommodates the alkyl part of the tail is formed by displacement of Tyr 44.C, Tyr 108.A and Lys 165.A. Changes to the resonance of the Lys 165 NH3 group upon ligand binding were monitored in a titration experiment by 2D HISQC NMR. Guided by the results of the modeling and NMR studies, and inspired by the success of acyclic antiviral nucleosides, compounds where a 5‐alkynyl uracyl moiety is coupled to an acyclic nucleoside phosphonate (ANP) were synthesized and evaluated. Of the compounds evaluated, sodium (6‐(5‐(3‐octanamidoprop‐1‐yn‐1‐yl)‐2,4‐dioxo‐3,4‐dihydropyrimidin‐1(2H)‐yl)hexyl)phosphonate ( 3 e ) exhibited 43 % of inhibitory effect on ThyX at 50 μM . While only modest activity was achieved, this is the first example of an ANP inhibiting ThyX, and these results can be used to further guide structural modifications to this class to develop more potent compounds with potential application as antibacterial agents acting through a novel mechanism of action.  相似文献   

11.
The structure of lipid A from lipopolysaccharide (LPS) of Rhodomicrobium vannielii ATCC 17100 (Rv) a phototrophic, budding bacterium was re-investigated using high-resolution mass spectrometry, NMR, and chemical degradation protocols. It was found that the (GlcpN)-disaccharide lipid A backbone was substituted by a GalpA residue that was connected to C-1 of proximal GlcpN. Some of this GalpA residue was β-eliminated by alkaline de-acylation, which indicated the possibility of the presence of another so far unidentified substituent at C-4 in non-stoichiometric amounts. One Manp residue substituted C-4′ of distal GlcpN. The lipid A backbone was acylated by 16:0(3-OH) at C-2 of proximal GlcpN, and by 16:0(3-OH), i17:0(3-OH), or 18:0(3-OH) at C-2′ of distal GlcpN. Two acyloxy-acyl moieties that were mainly formed by 14:0(3-O-14:0) and 16:0(3-O-22:1) occupied the distal GlcpN of lipid A. Genes that were possibly involved in the modification of Rv lipid A were compared with bacterial genes of known function. The biological activity was tested at the model of human mononuclear cells (MNC), showing that Rv lipid A alone does not significantly stimulate MNC. At low concentrations of toxic Escherichia coli O111:B4 LPS, pre-incubation with Rv lipid A resulted in a substantial reduction of activity, but, when higher concentrations of E. coli LPS were used, the stimulatory effect was increased.  相似文献   

12.
Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.  相似文献   

13.
A simple steady‐state kinetic high‐throughput assay was developed for the salicylate synthase MbtI from Mycobacterium tuberculosis, which catalyzes the first committed step of mycobactin biosynthesis. The mycobactins are small‐molecule iron chelators produced by M. tuberculosis, and their biosynthesis has been identified as a promising target for the development of new antitubercular agents. The assay was miniaturized to a 384‐well plate format and high‐throughput screening was performed at the National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases (NSRB). Three classes of compounds were identified comprising the benzisothiazolones (class I), diarylsulfones (class II), and benzimidazole‐2‐thiones (class III). Each of these compound series was further pursued to investigate their biochemical mechanism and structure–activity relationships. Benzimidazole‐2‐thione 4 emerged as the most promising inhibitor owing to its potent reversible inhibition.  相似文献   

14.
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.  相似文献   

15.
Bacterial pneumonia is one of the most prevalent infectious diseases and has high mortality in sensitive patients (children, elderly and immunocompromised). Although an infection, the disease alters the alveolar epithelium homeostasis and hinders normal breathing, often with fatal consequences. A special case is hospitalized aged patients, which present a high risk of infection and death because of the community acquired version of the Streptococcus pneumoniae pneumonia. There is evidence that early antibiotics treatment decreases the inflammatory response during pneumonia. Here, we investigate mechanistically this strategy using a multi-level mathematical model, which describes the 24 first hours after infection of a single alveolus from the key signaling networks behind activation of the epithelium to the dynamics of the local immune response. With the model, we simulated pneumonia in aged and young patients subjected to different antibiotics timing. The results show that providing antibiotics to elderly patients 8 h in advance compared to young patients restores in aged individuals the effective response seen in young ones. This result suggests the use of early, probably prophylactic, antibiotics treatment in aged hospitalized people with high risk of pneumonia.  相似文献   

16.
17.
The Mycobacterium tuberculosis Ser/Thr kinase PknB is implicated in the regulation of bacterial cell growth and cell division. The intracellular kinase function of PknB is thought to be triggered by peptidoglycan (PGN) fragments that are recognized by the extracytoplasmic domain of PknB. The PGN in the cell wall of M. tuberculosis has several unusual modifications, including the presence of N-glycolyl groups (in addition to N-acetyl groups) in the muramic acid residues and amidation of d -Glu in the peptide chains. Using synthetic PGN fragments incorporating these diverse PGN structures, we analyzed their binding characters through biolayer interferometry (BLI), NMR spectroscopy, and native mass spectrometry (nMS) techniques. The results of BLI showed that muropeptides containing 1,6-anhydro-MurNAc and longer glycan chains exhibited higher binding potency and that the fourth amino acid of the peptide stem, d -Ala, was crucial for protein recognition. Saturation transfer difference (STD) NMR spectroscopy indicated the major involvement of the stem peptide region in the PASTA-PGN fragment binding. nMS suggested that the binding stoichiometry was 1:1. The data provide the first molecular basis for the specific interaction of PGN with PknB and firmly establish PGNs as the effective ligands of PknB.  相似文献   

18.
Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1β, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1β, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.  相似文献   

19.
20.
The Rv3377c gene from the Mycobacterium tuberculosis H37 genome is specifically limited to those Mycobacterium species that cause tuberculosis. We have demonstrated that the gene product of Rv3377c is a diterpene cyclase that catalyzes the formation of tuberculosinol from geranylgeranyl diphosphate (GGPP). However, the characteristics of this enzyme had not previously been studied in detail with homogeneously purified enzyme. The purified enzyme catalyzed the synthesis of tuberculosinyl diphosphate from GGPP, but it did not bring about the synthesis of tuberculosinol. Optimal conditions for the highest activity were found to be as follows: pH 7.5, 30 °C, MgII (0.1 mM ), and Triton X‐100 (0.1 %). Under these conditions, the kinetic values of KM and kcat were determined to be 11.7±1.9 μM for GGPP and 12.7±0.7 min?1, respectively, whereas the specific activity was 186 nmol min?1 mg?1. The enzyme activity was inhibited at substrate concentrations higher than 50 μM . The catalytic activity was strongly inhibited by 15‐aza‐dihydrogeranylgeraniol and 5‐isopropyl‐N,N,N,2‐tetramethyl‐4‐(piperidine‐1‐carbonyloxy)benzenaminium chloride (Amo‐1618). The DXDTT293–297 motif, corresponding to the DXDDTA motif conserved among terpene cyclases, was mutated in order to investigate its function. The middle D295 was found to be the most crucial entity for the catalysis. D293 and two threonine residues function synergistically to enhance the acidity of D295, possibly through hydrogen‐bonding networks. The Rv3377c enzyme could also react with (14R/S)‐14,15‐oxidoGGPP to generate 3α‐ and 3β‐hydroxytuberculosinyl diphosphate. Conformational analyses were carried out with deuterium‐labeled GGPP and oxidoGGPP. We found that GGPP and (14R)‐oxidoGGPP adopted a chair/chair conformation, but (14S)‐oxidoGGPP adopted a boat/chair conformation. Interestingly, the conformations of oxidoGGPP for the A‐ring formation are the opposite of those of oxidosqualene when it is used as a substrate by squalene cyclases for the biosynthesis of hopene and tetrahymanol. (3R)‐Oxidosqualene is folded in a boat conformation, whereas (3S)‐2,3‐oxidosqualene folds into a chair conformation, for the formation of the A‐rings of the hopene and tetrahymanol skeletons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号