首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transpeptidase sortase A of Staphylococcus aureus (Sa-SrtA) is a valuable tool in protein chemistry. The native enzyme anchors surface proteins containing a highly conserved LPxTG sorting motif to a terminal glycine residue of the peptidoglycan layer in Gram-positive bacteria. This reaction is exploited for sortase-mediated ligation (SML), allowing the site-specific linkage of synthetic peptides and recombinant proteins by a native peptide bond. However, the moderate catalytic efficiency and specificity of Sa-SrtA fueled the development of new biocatalysts for SML, including the screening of sortase A variants form microorganisms other than S. aureus and the directed protein evolution of the Sa-SrtA enzyme itself. Novel display platforms and screening formats were developed to isolate sortases with altered properties from mutant libraries. This yielded sortases with strongly enhanced catalytic activity and enzymes recognizing new sorting motifs as substrates. This minireview focuses on recent advances in the field of directed sortase evolution and applications of these tailor-made enzymes in biochemistry.  相似文献   

2.
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.  相似文献   

3.
The major human pathogen Streptococcus pneumoniae plays a key role in several disease states including septicaemia, meningitis and community‐acquired pneumonia. Although vaccines against S. pneumoniae are available as prophylactics, there remains a need to identify and characterise novel chemical entities that can treat the diseases caused by this pathogen. S. pneumoniae expresses three sialidases, enzymes that cleave sialic acid from carbohydrate‐based surface molecules. Two of these enzymes, NanA and NanB, have been implicated in the pathogenesis of S. pneumoniae and are considered to be validated drug targets. Here we report our studies on the synthesis and structural characterisation of novel NanB‐selective inhibitors that are inspired by the β‐amino‐sulfonic acid family of buffers.  相似文献   

4.
A water tunnel in Candida antarctica lipase B that provides the active site with substrate water is hypothesized. A small, focused library created in order to prevent water from entering the active site through the tunnel was screened for increased transacylation over hydrolysis activity. A single mutant, S47L, in which the inner part of the tunnel was blocked, catalysed the transacylation of vinyl butyrate to 20 mM butanol 14 times faster than hydrolysis. The single mutant Q46A, which has a more open outer end of the tunnel, showed an increased hydrolysis rate and a decreased hydrolysis to transacylation ratio compared to the wild‐type lipase. Mutants with a blocked tunnel could be very useful in applications in which hydrolysis is unwanted, such as the acylation of highly hydrophilic compounds in the presence of water.  相似文献   

5.
Production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plant seed oils has been pursued to improve availability of these omega‐3 fatty acids that provide important human health benefits. Canola (Brassica napus), through the introduction of 10 enzymes, can convert oleic acid (OLA) into EPA and ultimately DHA through a pathway consisting of two elongation and five desaturation steps. Herein we present an assessment of the substrate specificity of the seven desaturases and three elongases that were introduced into canola by expressing individual proteins in yeast. In vivo feeding experiments were conducted with 14 potential fatty acid intermediates in an OLA to DHA pathway to determine the fatty acid substrate profiles for each enzyme. Membrane fractions were prepared from yeast expression strains and shown to contain active enzymes. The elongases, as expected, extended acyl‐CoA substrates in the presence of malonyl‐CoA. To distinguish between enzymes that desaturate CoA‐ and phosphatidylcholine‐linked fatty acid substrates, we developed a novel in vitro method. We show that a delta‐12 desaturase from Phytophthora sojae, an omega‐3 desaturase from Phytophthora infestans and a delta‐4 desaturase from Thraustochytrium sp., all prefer phosphatidylcholine‐linked acyl substrates with comparatively low use of acyl‐CoA substrates. To further validate our method, a delta‐9 desaturase from Saccharomyces cerevisiae was confirmed to use acyl‐CoA as substrate, but could not use phosphatidylcholine‐linked substrates. The results and the assay methods presented herein will be useful in efforts to improve modeling of fatty acid metabolism and production of EPA and DHA in plants.  相似文献   

6.
Zinc‐dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc‐dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27‐fold increase in specific activity for 4′‐acetamidoacetophenone, and the double mutant CPCR2 B16‐(C57A, L119M), with a 45‐fold improvement in the kcat?KM?1 value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.  相似文献   

7.
Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic‐resistant bacteria. One promising example of this is gramicidin A (gA). In its wild‐type sequence, gA is active by permeating the plasma membrane of Gram‐positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin‐resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram‐negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.  相似文献   

8.
Acrylates represent a class of α,β‐unsaturated compounds of high industrial importance. We investigated the influence of substrate conformations on the experimentally determined reaction rates of the enzyme‐catalysed transacylation of methyl acrylate and derivatives by ab initio DFT B3LYP calculations and molecular dynamics simulations. The results supported a least‐motion mechanism upon the sp2 to sp3 substrate transition to reach the transition state in the enzyme active site. This was in accordance with our hypothesis that acrylates form productive transition states from their low‐energy s‐sis/s‐trans conformations. Apparent kcat values were measured for Candida antarctica lipase B (CALB), Humicola insolens cutinase and Rhizomucor miehei lipase and were compared to results from computer simulations. More potent enzymes for acryltransfer, such as the CALB mutant V190A and acrylates with higher turnover numbers, showed elevated populations of productive transition states.  相似文献   

9.
BACKGROUND: 2,3‐Butanediol (2,3‐BD) is a valuable chemical that can be biosynthesized from many kinds of substrates. For commercial biological production of 2,3‐BD, it is desirable to use cheap substrate without pretreatment, such as starch. However, there have been few reports on the production of 2,3‐BD directly from starch. RESULTS: In this work, gene malS coding for α‐amylase (EC 3.2.1.1) precursor was inserted into plasmid pUC18K, and secretory over‐expression of α‐amylase was achieved by engineered Klebsiella pneumoniae. The extracellular recombinant amylase accelerated the hydrolyzation of starch, and one‐step production of 2,3‐BD from starch was carried out by engineered K. pneumoniae. A 2,3‐BD concentration of 3.8 g L?1 and yield of 0.19 g 2,3‐BD g?1 starch were obtained after 24 h fermentation. CONCLUSION: The one‐step production of 2,3‐BD from starch was achieved by secretory over‐expression of amylase in K. pneumoniae. This would simplify the process and reduce the production cost considerably by enabling use of starch with minimal pretreatment. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.  相似文献   

11.
Chitins produced via a conventional chemical route as well as from a new biological process were modified to increase the efficiency of enzymatic deacetylation reactions for the production of novel biological chitosan. These modified chitins were reacted for 24 h with extracellular fungal enzymes from Colletotrichum lindemuthianum. The chemical and physical properties of the various substrates were analysed and their properties related to the effectiveness in the deacetylation reaction. Modifications of the chitins affected the degree of deacetylation with varied effects. Without further modification to reduce crystallinity and to open up the solid substrate structure, the chitins were found to be poor substrates for the heterogeneous solid‐liquid enzymatic catalysis. It was found that the solvent and drying method used in modifying the chitins had significant impact on the final efficiency of the enzymatic deacetylation reaction. The most successful modifications through freeze drying of a colloidal chitin suspension increased the degree of enzymatic deacetylation by 20 fold. These processes reduce the crystallinity of the chitin making it easier for the enzymes to access their internal structure. X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and BET isotherm analysis are employed to characterise the modified chitins to ascertain the degree of crystallinity, porous structure, surface area, and morphology. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

13.
Arginine methylation is a prevalent post‐translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N‐methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη‐hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi–Bi kinetic mechanism for PRMT1, based on steady‐state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.  相似文献   

14.
In this study, a derivative of chitosan, O‐hydroxy‐2,3‐propyl‐N‐methyl‐N,N‐diallylammonium chitosan methyl sulfate (O‐MDAACS), was synthesized by reacting chitosan with methyl diallyl ammonium. The O‐MDAACS was confirmed by Fourier transform infrared spectroscopy and 1H NMR. Characterization was conducted including X‐ray diffraction, differential scanning calorimetry and thermogravimetry. The antibacterial activities of O‐MDAACS against Staphylococcus aureus and Klebsiella pneumoniae were evaluated. The minimum inhibitory concentrations on O‐MDAACS were 3.7% and 23% of those on chitosan against S. aureus and K. pneumonia, respectively. The minimum bactericidal concentrations on O‐MDAACS were 7% and 36% of those on chitosan against S. aureus and K. pneumonia, respectively. Thus the antibacterial activity of O‐MDAACS was higher than that of chitosan. The cytocompatibility was evaluated in vitro with L929 fibroblasts. The results showed that after 72 h incubation the cell viability on O‐MDAACS was about 12% and 59% higher than those on chitosan and on control, respectively. © 2012 Society of Chemical Industry  相似文献   

15.
This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96‐well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site‐saturation libraries targeted at active site residues of PETN reductase, are described. Two mutants (T26S and W102F) were shown to have switched in substrate enantiopreference against substrates (E)‐2‐aryl‐1‐nitropropene and α‐methyl‐trans‐cinnamaldehyde, respectively, with an increase in ee (62 % (R) for W102F). In addition, the detection of mutants with weak activity against α,β‐unsaturated carboxylic acid substrates showed progress in the expansion of the substrate range of PETN reductase. These methods can readily be adapted for rapid evolution of enzyme variants with other oxidoreductase enzymes.  相似文献   

16.
Many organisms contain head‐to‐head isoprenoid synthases; we investigated three such types of enzymes from the pathogens Neisseria meningitidis, Neisseria gonorrhoeae, and Enterococcus hirae. The E. hirae enzyme was found to produce dehydrosqualene, and we solved an inhibitor‐bound structure that revealed a fold similar to that of CrtM from Staphylococcus aureus. In contrast, the homologous proteins from Neisseria spp. carried out only the first half of the reaction, yielding presqualene diphosphate (PSPP). Based on product analyses, bioinformatics, and mutagenesis, we concluded that the Neisseria proteins were HpnDs (PSPP synthases). The differences in chemical reactivity to CrtM were due, at least in part, to the presence of a PSPP‐stabilizing arginine in the HpnDs, decreasing the rate of dehydrosqualene biosynthesis. These results show that not only S. aureus but also other bacterial pathogens contain head‐to‐head prenyl synthases, although their biological functions remain to be elucidated.  相似文献   

17.
The O-linked N-acetylglucosamine (O-GlcNAc) modification is an essential component in cell regulation. A single pair of human enzymes conducts this modification dynamically on a broad variety of proteins: O-GlcNAc transferase (OGT) adds the GlcNAc residue and O-GlcNAcase (OGA) hydrolyzes it. This modification is dysregulated in many diseases, but its exact effect on particular substrates remains unclear. In addition, no apparent sequence motif has been found in the modified proteins, and the factors controlling the substrate specificity of OGT and OGA are largely unknown. In this minireview, we will discuss recent developments in chemical and biochemical methods toward addressing the challenge of OGT and OGA substrate recognition. We hope that the new concepts and knowledge from these studies will promote research in this area to advance understanding of O-GlcNAc regulation in health and disease.  相似文献   

18.
Nylon 6 nanofibers containing silver nanoparticles (nylon 6/silver) were successfully prepared by electrospinning. The structure and properties of the electrospun fibers were studied with the aid of scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectroscopy, and X‐ray diffraction. The structural analysis indicated that the fibers electrospun at maximum conditions were straight and that silver nanoparticles were distributed in the fibers. Finally, the antibacterial activities of the nylon 6/silver nanofiber mats were investigated in a broth dilution test against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. It was revealed that nylon 6/silver possessed excellent antibacterial properties and an inhibitory effect on the growth of S. aureus and K. pneumoniae. On the contrary, nylon 6 fibers without silver nanoparticles did not show any such antibacterial activity. Therefore, electrospun nylon 6/silver nanocomposites could be used in water filters, wound dressings, or antiadhesion membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Sortase A from Staphylococcus aureus attracts growing interest for its use in biotechnological protein modification. This enzyme binds to a short signal sequence at the C terminus of a target protein, cleaves it by formation of an acyl-enzyme intermediate, and subsequently attaches an oligoglycine with a peptide bond. In this work, we explored its usability for the modification of the L19 Fab fragment (specific for fibronectin ED-B), a promising candidate for antibody-based cancer therapy. The Fab fragment was expressed with a sortase signal sequence attached to its light chain, and was successfully modified with a fluorescent oligoglycine probe in good yield. Our interest focused on performance under conditions of limited oligoglycine concentrations. Two unproductive side reactions of sortase were observed. The first was hydrolysis of the acyl-enzyme intermediate; in the second, sortase accepted the ε-amino group of lysine as substrate, thereby resulting in polypeptide crosslinking. In case of the L19 Fab fragment, it led to the covalent connection of the heavy and light chains. Both side reactions were effectively suppressed by sufficient concentrations of the oligoglycine probe.  相似文献   

20.
Protein arginine N‐methyltransferases (PRMTs) catalyze methyl‐group transfer from S‐adenosyl‐L ‐methionine onto arginine residues in proteins. In this study, modifications were introduced at the guanidine moiety of a peptidyl arginine residue to investigate how changes to the PRMT substrate can modulate enzyme activity. We found that peptides bearing Nη‐hydroxy or Nη‐amino substituted arginine showed higher apparent kcat values than for the monomethylated substrate when using PRMT1, whereas this catalytic preference was not observed for PRMT4 and PRMT6. Methylation by compromised PRMT1 variants E153Q and D51N further supports the finding that the N‐hydroxy substitution facilitates methyl transfer by tuning the reactivity of the guanidine moiety. In contrast, Nη‐nitro and Nη‐canavanine substituted substrates inhibit PRMT activity. These findings demonstrate that methylation of these PRMT substrates is dependent on the nature of the modification at the guanidine moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号