首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the engineering of the monocyclic sunflower trypsin inhibitor (SFTI‐1[1,14]) into a potent furin inhibitor. In a rational approach, we converted the native scaffold of this trypsin‐like serine protease inhibitor into a subtilisin‐like one by substitutions in the canonical and, particularly, in the substrate‐binding loop. Although the substrate sequence for furin is Arg‐X‐Arg/Lys‐Arg↓, the most potent inhibitor had a lysine at position P1. C‐terminally truncated versions demonstrated the strongest activity, thus suggesting a lack of interaction between this motif and the surface of furin. This observation was further supported by molecular modeling. With an inhibition constant of 0.49 nm , the engineered peptide H‐KRCKKSIPPICF‐NH2 is a promising compound for further development of furin inhibitors aimed at controlling the activity of this protease in vitro and in vivo.  相似文献   

2.
Live-cell imaging of cell-surface-associated proteolytic enzymes is crucial to understand their biological roles and functions in both physiological and pathological processes. However, the complexity of the cell membrane environment increases difficulties in specifically investigating targeted proteolytic activities within the microenvironment. Towards this end, a unique, photoremovable, furin-responsive peptide probe that can undergo spatiotemporal control through UV-light illumination has been designed and synthesized to aid in visualizing the activity of a cell-surface-associated protease enzyme, furin, in live cells. Prior to light irradiation, the photolabile moiety, 4,5-dimethoxy-2-nitrobenzyl, in the peptide sequence of the reporter will block furin-like enzymatic hydrolysis, and thus, no fluorescence will be observed. Upon simple light illumination, photolysis will occur, thereby revealing the uncaged peptide probe, which can undergo enzyme hydrolysis and lead to an increase in fluorescence signal; this allows the real-time imaging of endogenous cell-surface-associated furin-like enzyme function in living cells through precise spatial and temporal resolution.  相似文献   

3.
An artificial nucleic acid based on acyclic serinol building blocks and termed “serinol nucleic acid” (SNA) was used to construct a fluorescent probe for RNA visualization in cells. The molecular beacon (MB) composed of only SNA with a fluorophore at one terminus and a quencher at the other was resistant to enzymatic digestion, due to its unnatural acyclic scaffold. The SNA‐MB could detect its complementary RNA with extremely high sensitivity; the signal‐to‐background (S/B) ratio was as high as 930 when perylene and anthraquinone were used as the fluorophore and quencher pair. A high S/B ratio was also achieved with SNA‐MB tethering the conventional Cy3 fluorophore, and this probe enabled selective visualization of target mRNA in fixed cells. Thus, SNA‐MB has potential for use as a biological tool capable of visualizing RNA in living cells.  相似文献   

4.
Mitoxantrone (MTX) is an antineoplastic agent whose use is limited by serious side effects on non‐neoplastic cells. The aim of this study was the development of a new drug release system using an ionotropic gelation technique for microencapsulation of MTX in chitosan–carboxymethylinulin nanoparticles (CCInp), followed by evaluation of their cytotoxic effects on neoplastic MDA‐MB‐231 and non‐neoplastic NIH3T3 cell lines. The CCInp were prepared through a new reliable method for easy functionalization of both inulin and chitosan. Both unloaded and drug‐loaded nanoparticles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and showed a spherical morphology with an average hydrodynamic diameter between 40 and 80 nm. Both nanoparticles were stable and easily degraded by lysozyme. MTX‐loaded nanoparticles led to a greater mortality of MDA‐MB‐231 relative to free drug due to the ability of the nanoparticles to accumulate preferentially in neoplastic cells. The developed drug release system retains the ability to kill MDA‐MB‐231 cells in vitro, improving the survival of NIH3T3 cells.  相似文献   

5.
New peptidomimetic furin inhibitors with unnatural amino acid residues in the P3 position were synthesized. The most potent compound 4‐guanidinomethyl‐phenylacteyl‐Arg‐Tle‐Arg‐4‐amidinobenzylamide (MI‐1148) inhibits furin with a Ki value of 5.5 pM . The derivatives also strongly inhibit PC1/3, whereas PC2 is less affected. Selected inhibitors were tested in cell culture for antibacterial and antiviral activity against infectious agents known to be dependent on furin activity. A significant protective effect against anthrax and diphtheria toxin was observed in the presence of the furin inhibitors. Furthermore, the spread of the highly pathogenic H5N1 and H7N1 avian influenza viruses and propagation of canine distemper virus was strongly inhibited. Inhibitor MI‐1148 was crystallized in complex with human furin. Its N‐terminal guanidinomethyl group in the para position of the P5 phenyl ring occupies the same position as that found previously for a structurally related inhibitor containing this substitution in the meta position, thereby maintaining all of the important P5 interactions. Our results confirm that the inhibition of furin is a promising strategy for a short‐term treatment of acute infectious diseases.  相似文献   

6.
The in vitro anticancer activity of the dinuclear trithiolato‐bridged arene ruthenium complex diruthenium‐1 (DiRu‐1) was evaluated against a panel of human cancer cell lines used as in vitro models for hepatocellular carcinoma (HepG2 cells), estrogen‐responsive breast adenocarcinoma (MCF‐7 cells), and triple‐negative breast adenocarcinoma (MDA‐MB‐231 cells). DiRu‐1 is highly cytotoxic to these cell lines, demonstrating half‐maximal inhibitory concentrations (IC50) in the low‐nanomolar range (77±1.4 to 268.2±4.4 nm ). The main molecular mechanisms responsible for the high cytotoxicity of DiRu‐1 against the most responsive MCF‐7 cell line (IC50=77±1.4 nm) were investigated on the basis of the capacity of DiRu‐1 to induce oxidative stress, apoptosis, and DNA damage, and to inhibit the cell cycle and proliferation. The results show that DiRu‐1 triggers caspase‐dependent apoptosis in MCF‐7 cells on both the intrinsic and extrinsic pathways. Moreover, the Ru complex also causes necrosis, mitotic catastrophe, and autophagy. DiRu‐1 increases the intracellular levels of reactive oxygen species (ROS), which play a significant role in its cytotoxicity and pro‐apoptotic activity. An important mechanism of the anticancer activity of DiRu‐1 appears to be the induction of DNA lesions, mainly due to apoptotic DNA fragmentation and cell‐cycle arrest at the G2/M checkpoint. These changes are correlated with the concentration of DiRu‐1, the duration of the cell treatment, and the post‐treatment time.  相似文献   

7.
Fluorescence‐based oligonucleotide (ON) hybridization probes greatly aid the detection and profiling of RNA sequences in cells. However, certain limitations such as target accessibility and hybridization efficiency in cellular environments hamper their broad application because RNAs can form complex and stable structures. In this context, we have developed a robust hybridization probe suitable for imaging RNA in cells by combining the properties of 1) a new microenvironment‐sensitive fluorescent nucleobase analogue, obtained by attaching the Lucifer chromophore ( 1,8‐naphthalimide) at the 5‐position of uracil, and 2) a peptide nucleic acid (PNA) capable of forming stable hybrids with RNA. The fluorescence of the PNA base analogue labeled with the Lucifer chromophore, when incorporated into PNA oligomers and hybridized to complementary and mismatched ONs, is highly responsive to its neighboring base environment. Notably, the PNA base reports the presence of an adenine repeat in an RNA ON with reasonable enhancement in fluorescence. This feature of the emissive analogue enabled the construction of a poly(T) PNA probe for the efficient visualization of polyadenylated [poly(A)] RNAs in cells—poly(A) being an important motif that plays vital roles in the lifecycle of many types of RNA. Our results demonstrate that such responsive fluorescent nucleobase analogues, when judiciously placed in PNA oligomers, could generate useful hybridization probes to detect nucleic acid sequences in cells and also to image them.  相似文献   

8.
Molecular beacon (MB) probes are dual‐labeled hairpin‐shaped oligodeoxyribonucleotides that are extensively used for real‐time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real‐time assays and improve the accuracy of single‐nucleotide polymorphism genotyping.  相似文献   

9.
A three‐component probe harnesses the extraordinary properties of a solid‐state fluorophore for the detection of living cells exhibiting a particular peptidase activity. The off–on mode by which the probe operates, the bright fluorescence of the resulting precipitate, and the rapid response allow an exceptional signal‐to‐background ratio during microscopic imaging. A tertiary carbamate link between the spacer and phenolic fluorophore is at the heart of the probe's long‐term stability. The degree of chlorination of the probe determines its response time and thus its suitability for live‐cell analysis. Our probe also allows highly resolved localization of peptidase activity during gel analysis or on agar. In comparison, probes releasing soluble fluorophores demonstrate complete diffusion of the fluorescent signal. These results demonstrate the probe's potential for diverse biomedical applications, including high‐fidelity flow cytometry and sensitive colony assays.  相似文献   

10.
Selective targeting of the tumor cell mitochondrion is a viable approach for the development of anticancer agents because the organelle is functionally different from the mitochondria of normal cells. We recently developed a novel aryl‐urea fatty acid, 16({[4‐chloro‐3‐(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid ( 1 ) that was found to disrupt mitochondria and to activate apoptosis in MDA‐MB‐231 breast cancer cells. However, there is currently little information on the structural requirements for the activity of compound 1 analogues. The present study evaluated the role of the carboxylic acid group on the anticancer activity of 1 . Bioisosteric replacement of the carboxylate in 1 maintained activity. Thus, like 1 , the sulfonic acid analogue 1‐SA and the oxo‐thiadiazole analogue 1‐OT were also found to target the mitochondrion and to activate cell killing capacity. The hydroxamic acid analogue 1‐HA also killed MDA‐MB‐231 cells, but its onset of action was slower than that of 1‐SA and 1‐OT . In contrast, replacement of the carboxylate with non‐bioisosteric amido and methylamido groups produced analogues that minimally altered mitochondrial function and showed little capacity to decrease tumor cell viability. These findings suggest that the carboxylate moiety in the novel mitochondrially targeted agent 1 is an important determinant of the kinetics and efficacy of anticancer cell activities of compound 1 analogues. Further development of carboxylate‐modified analogues of aryl‐urea fatty acids as potential anticancer agents could now be warranted.  相似文献   

11.
Binding of hirudin to meizothrombin   总被引:1,自引:0,他引:1  
Prothrombin (coagulation factor II) is the inactive precursor molecule of thrombin (coagulation factor IIa). Proteolytic cleavage of the peptide bond Arg320-Ile321 converts prothrombin into the two-chain thrombin precursor meizothrombin. Meizothrombin hydrolyses peptidyl substrates, but cleavage of fibrinogen is poor. Unfortunately, meizothrombin exhibits a significant autocatalytic activity and thus is not structurally stable in solution. Hirudin, the 65-residue peptide anticoagulant from the salivary gland of the European leech Hirudo medicinalis, is a highly specific and effective thrombin inhibitor. To study the interactions of meizothrombin and hirudin, recombinant prothrombin with active site Asp419 replaced by Asn (D419N-prothrombin) was produced in CHO cells and transformed into D419N-meizothrombin in vitro. D419N-meizothrombin exhibited no proteolytic and autocatalytic activity. D419N-meizothrombin was affinity purified at an immobilized C- terminal hirudin-derived peptide demonstrating the presence and activity of the anion binding exosite. D419N-meizothrombin exhibited binding activity to hirudin immobilized at the solid phase in an ELISA. Incubation of D419N-meizothrombin with hirudin resulted in a significant increase of intrinsic fluorescence. Fluorescence titration of D419N-meizothrombin with hirudin produced a sharp break in the titration curve at the molar equivalence point and a total fluorescence enhancement of 24%. However, the titration curve did not reflect a simple binding mechanism. Incubation of D419N-meizothrombin with fibrinopeptide A and C-terminal hirudin peptide 54-65 did not change fluorescence emission. Trp468 located in the gamma-loop of thrombin was replaced by Phe in the double-mutant D419N/W468F-thrombin. Similar to D419N-thrombin and D419N-meizothrombin, formation of the D419N/W468F- thrombin/hirudin complex resulted a significant increase in intrinsic fluorescence. Apparently, the binding of hirudin induces similar structural changes in both meizothrombin and thrombin. The structural change does not involve the flexible gamma-loop. The results suggest that meizothrombin binds hirudin similar to thrombin.   相似文献   

12.
A structure–activity relationship (SAR) study of the triosmium carbonyl cluster Os3(CO)10(NCCH3)2 was carried out with a series of clusters of the general formula Os3(CO)12?nLn, cationic osmium clusters and a hemi‐labile maltolato‐Os cluster. The SAR results showed that good solubility in DMSO and at least one vacant site are required for cytotoxicity. In vitro evaluation of these new compounds showed that some are selectively active against estrogen receptor (ER)‐independent MDA‐MB‐231 breast cancer cell lines relative to ER‐dependent MCF‐7 breast cancer cells, suggesting that the compounds have a different biological target specific to MDA‐MB‐231 cells. In particular, the maltolato cluster exhibits strong antiproliferative activity, with an IC50 value of 3 μM after only 24 h incubation. Additionally, biochemical assays conducted with the cationic cluster show that it induces apoptosis, although a biological target has not yet been identified. Further research to establish the molecular targets of these compounds and to develop improved organometallic clusters as potential breast cancer therapeutics is underway.  相似文献   

13.
Sipholenol A, a sipholane triterpene isolated from the Red Sea sponge Callyspongia siphonella, has the ability to reverse multidrug resistance in cancer cells that overexpress P‐glycoprotein (P‐gp). Here, the antimigratory activity of sipholenol A and analogues are reported against the highly metastatic human breast cancer cell line MDA‐MB‐231 in a wound‐healing assay. Sipholenol A and sipholenone A were semisynthetically optimized using ligand‐based strategies to generate structurally diverse analogues in an attempt to maximize their antimigratory activity. A total of 22 semisynthetic ester, ether, oxime, and carbamate analogues were generated and identified by extensive one‐ and two‐dimensional NMR spectroscopy and high‐resolution mass spectrometry analyses. Sipholenol A 4β‐4‐chlorobenzoate and 19,20‐anhydrosipholenol A 4β‐4‐chlorobenzoate esters were the most potent of all tested analogues in the wound‐healing assay, with IC50 values of 5.3 and 5.9 μM , respectively. Generally, ester derivatives showed better antimigratory activities than the carbamate analogues. A KINOMEscan of 19,20‐anhydrosipholenol A 4β‐benzoate ester against 451 human protein kinases identified protein tyrosine kinase 6 (PTK6) as a potential target. In breast tumor cells, PTK6 promotes growth factor signaling and migration, and as such the semisynthetic sipholanes were evaluated for their ability to inhibit PTK6 phosphorylation in vitro. The two analogues with the highest antimigratory activities, sipholenol A 4β‐4‐chlorobenzoate and 19,20‐anhydrosipholenol A 4β‐4‐chlorobenzoate esters, also exhibited the most potent inhibition of PTK6 phosphorylation inhibition. None of the compounds exhibited cytotoxicity in a normal epithelial breast cell line. These derivatives were evaluated in an in vitro invasion assay, where sipholenol A succinate potently inhibited MDA‐MB‐231 cell invasion at 10 μM . These results highlight sipholane triterpenoids as novel antimigratory marine natural products with potential for further development as agents for the control of metastatic breast malignancies.  相似文献   

14.
A chiral conjugated polymer can be obtained by the polymerization of (S)‐6,6′‐dibromo‐2,2′‐binaphtho‐20‐crown‐6 and 1,4‐divinyl‐2,5‐dibutoxybenzene via a palladium‐catalyzed Heck cross‐coupling reaction. The chiral conjugated polymer shows strong green‐blue fluorescence. The responsive properties of the chiral polymer to metal ions were investigated using fluorescence and UV‐visible absorption spectra. K+, Pb2+, Cd2+ and Ba2+ enhance the fluorescence of the polymer; in contrast, Hg2+ causes effective quenching of the fluorescence of the polymer. The obvious influences on the fluorescence indicate that the 2,2′‐binaphtho‐20‐crown‐6 moiety plays an important role in fluorescence recognition for Hg2+ due to the effective photo‐induced electron transfer or charge transfer between the conjugated polymer backbone and the receptor ions. The responsive properties of the polymer to metal ions show that the chiral conjugated polymer incorporating 2,2′‐binaphtho‐20‐crown‐6 moieties in the main‐chain backbone as recognition sites can act as an excellent fluorescent probe for the sensitive detection of Hg2+. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
A fluorescent probe based on a simple coumarin derivative could recognise mercury ions (Hg(ii )) and thiols selectively in aqueous solution. The addition of Hg(ii ) induced a blue shift of the fluorescence emission band of the probe while the fluorescence was almost quenched by the addition of p‐toluenethiol or cysteine (Cys). The detection limit of the probe towards Hg(ii ) and Cys was 8 µmol/L. The probe could be used for the detection of Hg(ii ) and thiols by the naked eye under ultraviolet light irradiation.  相似文献   

16.
We report the design and development of a fluorescent CdII ion complex that is capable of the ratiometric detection of H2S in living cells. This probe exploits the metal‐ion‐induced emission red shift resulting from direct contact between the aromatic ring of a fluorophore and a metal ion (i.e., arene–metal‐ion or “AM” contact). The CdII complex displays a large emission blue shift upon interaction with H2S as the CdII‐free ligand is released by the formation of cadmium sulfide. Screening of potential ligands and fluorophores led to the discovery of a pyronine‐type probe, 6? CdII, that generated a sensitive and rapid ratio value change upon interaction with H2S, without interference from the glutathione that is abundant in the cell. The membrane‐impermeable 6? CdII was successfully translocated into live cells by using an oligo‐arginine peptide and pyrenebutylate as carriers. As such, 6? CdII was successfully applied to the ratiometric detection of both exogenous and endogenous H2S produced by the enzymes in living cells, thus demonstrating the utility of 6? CdII in biological fluorescence analysis.  相似文献   

17.
Grb7 is a non‐catalytic protein, the overexpression of which has been associated with the proliferative and migratory potentials of cancer cells. Virtual screening strategies involving a shape‐based similarity search, molecular docking, and 2D‐similarity searches complemented by experimental binding studies (Thermofluor and isothermal titration calorimetry) resulted in the identification of nine novel phenylbenzamide‐based antagonists of the Grb7 SH2 domain. Moderate binding affinities were observed, ranging from Kd=32.3 μM for lead phenylbenzamide NSC 104999 ( 1 ) to Kd=1.1 μM for a structurally related compound, NSC 57148 ( 2 ). Deconvolution of the affinity data into its components revealed differences in lead binding, from being entropy based (lead 1 ) to enthalpically driven (NSC 100874 ( 3 ), NSC 55158 ( 4 ), and compound 2 ). Finally, the lead compound 1 was found to decrease the growth of MDA‐MB‐468 breast cancer cells, with an IC50 value of 39.9 μM . It is expected that these structures will serve as novel leads in the development of Grb7‐based anticancer therapeutics.  相似文献   

18.
The activation of viral glycoproteins by the host protease furin is an essential step in the replication of numerous pathogenic viruses. Thus, effective inhibitors of furin could serve as broad-spectrum antiviral drugs. A crystal structure of an inhibitory hexapeptide derivative in complex with furin served as template for the rational design of various types of new cyclic inhibitors. Most of the prepared derivatives are relatively potent furin inhibitors with inhibition constants in the low nanomolar or even sub-nanomolar range. For seven derivatives the crystal structures in complex with furin could be determined. In three complexes, electron density was found for the entire inhibitor. In the other cases the structures could be determined only for the P6/P5-P1 segments, which directly interact with furin. The cyclic derivatives together with two non-cyclic reference compounds were tested as inhibitors of the proteolytic activation and replication of respiratory syncytial virus in cells. Significant antiviral activity was found for both linear reference inhibitors, whereas a negligible efficacy was determined for the cyclic derivatives.  相似文献   

19.
Impaired mitophagy hinders the clearance of damaged mitochondria, inducing pathological states. Knowledge of this phenomenon is key to diagnosing certain diseases and understanding their pathogenesis. Mitophagy involves an acidization process that could serve as an ideal detection target. In this work, we designed and synthesized a mitochondrial-targeting fluorescence probe, Z2 , for evaluating pH variation. This probe exhibited remarkable “turn-on” fluorescence under acidic conditions. In biological applications, Z2 showed a strong, specific pH detection capacity in Parkin-overexpressing HeLa cells during the mitophagy process. The “turn-on” fluorescence property of Z2 was also used to detect pH variations in Caenorhabditis elegans. This probe, as a novel pH assessment tool, may facilitate further research of mitophagy-associated pathological patterns.  相似文献   

20.
β‐Glucoside‐configured cyclophellitols are activity‐based probes (ABPs) that allow sensitive detection of β‐glucosidases. Their applicability to detect proteins fused with β‐glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M‐777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4‐methylumbelliferyl β‐d ‐lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre‐blocking with conduritol β‐epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β‐glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high‐resolution detection moieties) should assist further research in living cells and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号