首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

2.
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed.  相似文献   

3.
Inhibition of specific protein–protein interactions is attractive for a range of therapeutic applications, but the large and irregularly shaped contact surfaces involved in many such interactions make it challenging to design synthetic antagonists. Here, we describe the development of backbone‐modified peptides containing both α‐ and β‐amino acid residues (α/β‐peptides) that target the receptor‐binding surface of vascular endothelial growth factor (VEGF). Our approach is based on the Z‐domain, which adopts a three‐helix bundle tertiary structure. We show how a two‐helix “mini‐Z‐domain” can be modified to contain β and other nonproteinogenic residues while retaining the target‐binding epitope by using iterative unnatural residue incorporation. The resulting α/β‐peptides are less susceptible to proteolysis than is their parent α‐peptide, and some of these α/β‐peptides match the full‐length Z‐domain in terms of affinity for receptor‐recognition surfaces on the VEGF homodimer.  相似文献   

4.
Family B G protein-coupled receptors play important physiological roles and possess large extracellular domains (ECDs) that aid in binding the long polypeptide hormones that are their natural agonists. We have previously shown that agonist analogues in which subsets of native α-amino acid residues are replaced with β-amino acid residues can retain activity while avoiding proteolytic degradation. This study focuses on eight new α/β analogues of glucagon-like peptide 1 (GLP-1) that each contain five α-to-β replacements in the C-terminal half of the peptide. This portion of GLP-1 is known to adopt an α-helical conformation and contact the ECD. All four registries of the αααβ backbone pattern were evaluated; previous work has shown that the αααβ pattern supports adoption of an α-helix-like conformation. Two α-to-β replacement formats were employed, one involving β3 homologues of the native residues replaced and the other involving a cyclic β residue. GLP-1R response was characterized in terms of stimulation of cAMP production and β-arrestin recruitment. Some of the backbone-modified GLP-1 analogues display biased agonism of the GLP-1R. This study helps to establish the scope of the α→β backbone modification strategy.  相似文献   

5.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


6.
This update describes a highly efficient organocatalytic aldol reaction of ketones and β,γ‐unsaturated α‐keto esters for constructing the chiral tertiary alcohol motif. With the application of 9‐amino(9‐deoxy)epi‐Cinchona alkaloid and an acidic additive as catalysts, both acyclic and cyclic ketones react with β,γ‐unsaturated α‐keto esters smoothly to afford aldol adducts in good to excellent yields and asymmetric induction. This protocol offers a new pathway for the construction of adjacent chiral carbon centers and the synthesis of chiral β‐hydroxy carbonyl compounds.  相似文献   

7.
BACKGROUND: Although submerged fermentation (SmF) is the conventional method in industry, use of low‐cost agro‐residues for α‐amylase production in SmF has not been well established. Here we optimized agro‐residue‐based medium and culture conditions for α‐amylase production in SmF using a hyper‐producing Bacillus subtilis KCC103. RESULTS: B. subtilis KCC103 produced α‐amylase in SmF by utilizing agro‐residues. Wheat bran (WB) and sunflower oil cake (SFOC) were selected as the best substrates using shake flasks. Medium containing WB (carbohydrate rich) and SFOC (rich in protein and free amino acids) at 1:1 (w/w) ratio produced high levels (90 IU mL−1) of α‐amylase at 30–36 h in a shake flask. The α‐amylase yield was 14‐fold enhanced (1258 IU mL−1) by optimizing process parameters and medium composition following response surface methodology in a bioreactor. The optimal conditions were: WB 1.27%, SFOC 1.42%, pH 7, 37 °C and 10–12 h. Both in shake flask and bioreactor α‐amylase synthesis was not repressed by the release of simple sugars into the medium. CONCLUSION: KCC103 with catabolite derepression and hyperproducing ability is useful for economic α‐amylase production using low‐cost agro‐residual substrates in conventional SmF. Since the production time (10–12 h) is much shorter than other strains this would improve productivity and further reduce the cost of α‐amylase production. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

9.
A new strategy was developed for the synthesis of a valuable class of α‐aminomethylacrylates via the Baylis–Hillman reaction of different aldehydes with methyl acrylate followed by acetylation of the resulting allylic alcohols and SN2′‐type amination of the allylic acetates. Asymmetric hydrogenation of these diverse olefinic precursors using rhodium(Et‐Duphos) catalysts provided the corresponding β2‐amino acid derivatives with excellent enantioselectivities and exceedingly high reactivities (up to >99.5% ee and S/C=10,000). The first hydrogenation of (Z)‐configurated substrates was studied for the synthesis of β2‐amino acid derivatives. The high influence of the substrate geometry and steric hindrance on the reactivity and enantioselectivity was also disclosed for this reaction. This protocol provides a highly practical, facile and scalable method for the preparation of optically pure β2‐amino acids and their derivatives under mild reaction conditions.  相似文献   

10.
α‐Conotoxin MII (α‐CTxMII) is a 16‐residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2–Cys8 and Cys3–Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel–ligand interactions on ligand‐binding affinity, homology models of the heteropentameric α3β2‐nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata‐nAChR (Tm‐nAChR, PDB ID: 2BG9) and the Aplysia californica‐acetylcholine binding protein (Ac‐AChBP, PDB ID: 2BR8) as templates for the α3‐ and β2‐subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α‐CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α‐CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2‐nAChR for α‐CTxMII with ACh bound to the receptor, and this was confirmed through two‐electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α‐CTxMIIs on nAChRs.  相似文献   

11.
The dynamic kinetic resolution of α‐substituted racemic β‐lactams by alcoholytic ring‐opening, catalyzed by immobilized lipase B from Candida antarctica is described. With this process, a variety of racemic α‐substituted N‐Cbz‐azetidinones (Cbz=benzyloxycarbonyl) was transformed to the corresponding N‐Cbz‐protected β2‐amino acid allyl esters with high enantioselectivity (up to 99%) and high yields (up to quantitative) at room temperature.

  相似文献   


12.
BACKGROUND: Pharmaceutical companies continue to evaluate β‐amino acids and β‐lactams in a range of drug candidates. The development of a highly efficient and selective bioresolution of cyclic β‐lactam substrates could yield enantiopure lactams and β‐amino acids with medicinal potential. The aim of this work was to discover and develop a biocatalyst capable of selectively hydrolysing β‐lactam substrates. RESULTS: Screening of our in‐house culture collection led to the discovery of a microorganism, Rhodococcus globerulus (NCIMB 41042) with β‐lactamase activity. Whole‐cell bioresolutions of the β‐lactams 1–4 were successfully carried out and in all cases enantiomeric excesses of the residual lactam and amino acid product were found to be greater than 98%. For one example, the bioresolution was optimised to operate at 60 g L?1 substrate concentration with a 20% wt/wt cell paste loading. CONCLUSION: A microorganism, Rhodococcus globerulus (NCIMB 41042), capable of selectively hydrolysing a range of cyclic β‐lactams, has been discovered. A scalable whole‐cell bioresolution process has been developed, leading to the synthesis of multigram quantities of enantiomerically pure β‐lactams and β‐amino acids. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
Turns are secondary‐structure elements that are omnipresent in natively folded polypeptide chains. A large variety of four‐residue β‐turns exist, which differ mainly in the backbone dihedral angle values of the two central residues i+1 and i+2. The βVI‐type turns are of particular biological interest because the i+2 residue is always a proline in the cis conformation and might thus serve as target of peptidyl prolyl cis/trans isomerases (PPIases). We have designed cyclic hexapeptides containing two proline residues that predominantly adopt the cis conformation in aqueous solution. NMR data and MD calculations indicated that the cyclic peptide sequences c‐(‐D Xaa‐Ser‐Pro‐D Xaa‐Lys‐Pro‐) result in highly symmetric backbone structures when both prolines are in the cis conformation and the D ‐amino acids are either alanine or phenylalanine residues. Replacement of the serine residue either by phosphoserine or by tyrosine compromises this symmetry, but further increases the cis conformation content of both prolines. As a result, we obtained a cyclic hexapeptide that exists almost exclusively as the cis‐Pro/cis‐Pro conformer but shows no cis/trans interconversion even in the presence of the PPIase Pin1, apparently due to an energetically quite favorable but highly restricted conformational space.  相似文献   

14.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

15.
Glycosynthases—retaining glycosidases mutated at their catalytic nucleophile—catalyze the formation of glycosidic bonds from glycosyl fluorides as donor sugars and various glycosides as acceptor sugars. Here the first glycosynthase derived from a family 35 β‐galactosidase is described. The Glu→Gly mutant of BgaC from Bacillus circulans (BgaC‐E233G) catalyzed regioselective galactosylation at the 3‐position of the sugar acceptors with α‐galactosyl fluoride as the donor. Transfer to 4‐nitophenyl α‐D ‐N‐acetyl‐glucosaminide and α‐D ‐N‐acetylgalactosaminide yielded 4‐nitophenyl α‐lacto‐N‐biose and α‐galacto‐N‐biose, respectively, in high yields (up to 98 %). Kinetic analysis revealed that the high affinity of the acceptors contributed mostly to the BgaC‐E233G‐catalyzed transglycosylation. BgaC‐E233G showed no activity with β‐(1,3)‐linked disaccharides as acceptors, thus suggesting that this enzyme can be used in “one‐pot synthesis” of LNB‐ or GNB‐containing glycans.  相似文献   

16.
The polymorphic compositions and mechanical properties of isotactic polypropylene (iPP) samples nucleated by a selective β‐nucleating agent [N,N′‐diphenyl adipamide (DPA)] were investigated with wide‐angle X‐ray diffraction, polarized light microscopy, scanning electron microscopy, and mechanical tests. It was found that β‐phase crystals emerged with the addition of DPA, and the relative proportion of the β‐crystalline form reached the maximum value of 0.97 with the addition of 0.1 wt % DPA. The curved lamellae in the β spherulites were like flowers. The β spherulites were etched more easily than α spherulites because amorphous regions were distributed inside the β spherulites. The Izod notched impact strength increased sharply with the addition of DPA and attained the maximum value of 7.30 kJ/m2 (the value of blank iPP was 3.13 kJ/m2) with the addition of 0.1 wt % DPA. An analysis of the misfit factors between DPA and β‐iPP showed that β‐iPP could epitaxially crystallize on the DPA crystal well. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A fusion protein composed of β1,3‐N‐acetyl‐D ‐glucosaminyltransferase (β1,3‐GlcNAcT) from Streptococcus agalactiae type Ia and maltose‐binding protein (MBP) was produced in Escherichia coli as a soluble and highly active form. Although this fusion protein (MBP‐β1,3‐GlcNAcT) did not show any sugar‐elongation activity to some simple low‐molecular weight acceptor substrates such as galactose, Galβ(1→4)Glc (lactose), Galβ(1→4)GlcNAc (N‐acetyllactosamine), Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)Glc (lacto‐N‐tetraose), and Galβ(1→4)GlcβCer (lactosylceramide, LacCer), the multivalent glycopolymer having LacCer‐mimic branches (LacCer mimic polymer, LacCer primer) was found to be an excellent acceptor substrate for the introduction of a β‐GlcNAc residue at the O‐3 position of the non‐reducing galactose moiety by this engineered enzyme. Subsequently, the polymer having GlcNAcβ(1→3)Galβ(1→4)Glc was subjected to further enzymatic modifications by using recombinant β1,4‐D ‐galactosyltransferase (β1,4‐GalT), α2,3‐sialyltransferase (α2,3‐SiaT), α1,3‐L ‐fucosyltransferase (α1,3‐FucT), and ceramide glycanase (CGase) to afford a biologically important ganglioside; Neu5Aα(2→3)Galβ(1→4)[Fucα(1→3)]GlcNAcβ(1→3)Galβ(1→4)GlcCerα(IV3Neu5Acα,III3Fucα‐nLc4Cer) in 40% yield (4 steps). Interestingly, it was suggested that MBP‐β1,3‐GlcNAcT could also catalyze a glycosylation reaction of the LacCer mimic polymer with N‐acetyl‐D ‐galactosamine served from UDP‐GalNAc to afford a polymer carrying trisaccharide branches, GalNAcβ(1→3)Galβ(1→4)Glc. The versatility of the MBP‐β1,3‐GlcNAcT in the practical synthesis was preliminarily demonstrated by applying this fusion protein as an immobilized biocatalyst displayed on the amylose resin which is known as a solid support showing potent binding‐affinity with MBP.  相似文献   

18.
Previous studies showed that the stable β‐form of molecular compound (MC) crystals having a double‐chain‐length structure is formed in a binary mixture system of 1,3‐dioleoyl‐2‐palmitoyl‐sn‐glycerol (OPO) and 1,3‐dipalmitoyl‐2‐oleoyl‐sn‐glycerol (POP) with a 1:1 concentration ratio of OPO and POP. The use of MC crystals made of POP and OPO for edible applications, such as margarine, is advantageous due to no‐trans, low‐saturated, and high‐oleic fats. Industrial manufacturing technology involves rapid cooling processes, and the kinetic properties of crystallization of MC of OPO and POP are required. In this study, we clarified the crystallization of MC of OPO and POP under rapid cooling at rates of 1–150 °C min?1, using synchrotron radiation time‐resolved X‐ray diffraction and differential scanning calorimetry methods. The main results are as follows: (1) POP and OPO crystallized in separate manners without the formation of MC crystals under rapid cooling (>40 °C min?1), while MC crystals started to form with decreasing rates of cooling in addition to the POP and OPO crystals (<30 °C min?1); (2) metastable and stable forms sub‐α, α, β′, and β of POP and OPO were formed, whereas the MC crystals of β were formed during the cooling processes; and (3) the heating processes after crystallization by rapid cooling caused separate melting of the metastable and stable forms of POP and OPO crystals and the formation of MC crystals of β made of POP and OPO, as well as melting of the MC crystals alone.  相似文献   

19.
β‐Sheet antimicrobial peptides (AMPs) are well recognized as promising candidates for the treatment of multidrug‐resistant bacterial infections. To dissociate antimicrobial activity and hemolytic effect of β‐sheet AMPs, we hypothesize that N‐methylation of the intramolecular hydrogen bond(s)‐forming amides could improve their specificities for microbial cells over human erythrocytes. We utilized a model β‐sheet antimicrobial peptide, gramicidin S (GS), to study the N‐methylation effects on the antimicrobial and hemolytic activities. We synthesized twelve N‐methylated GS analogues by replacement of residues at the β‐strand and β‐turn regions with N‐methyl amino acids, and tested their antimicrobial and hemolytic activities. Our experiments showed that the HC50 values increased fivefold compared with that of GS, when the internal hydrogen‐bonded leucine residue was methylated. Neither hemolytic effect nor antimicrobial activity changed when proline alone was replaced with N‐methylalanine in the β‐turn region. However, analogues containing N‐methylleucine at β‐strand and N‐methylalanine at β‐turn regions exhibited a fourfold increase in selectivity index compared to GS. We also examined the conformation of these N‐methylated GS analogues using 1H NMR and circular dichroism (CD) spectroscopy in aqueous solution, and visualized the backbone structures and residue orientations using molecular dynamics simulations. The results show that N‐methylation of the internal hydrogen bond‐forming amide affected the conformation, backbone shape, and side chain orientation of GS.  相似文献   

20.
Masked and activated highly enantioenriched α,α‐disubstituted α‐amino acids with an additional adjacent stereocenter were formed by a tandem reaction involving five steps using racemic unprotected amino acid substrates. Key step is the 1,4‐addition of in‐situ generated azlactones to a broad number of enones. The products of this step‐economic route can, e.g., be useful for a divergent and rapid access to biologically interesting unnatural glutamic acid derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号