首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Hydrogenated amorphous silicon carbide (a-SiCx:H) films were prepared by the decomposition of tetramethylsilane (TMS) with microwave discharge flow of Ar. When radio-frequency (RF) bias voltage (− VRF) was applied to the substrate, the film hardness increased as (2.39 ± 1.12)-(9.15 ± 0.55) GPa for − VRF = 0-100 V. The a-SiCx:H films prepared under various − VRF conditions were analyzed by the carbon-K near edge X-ray absorption fine structure (NEXAFS), by the elastic recoil detection analysis (ERDA), and by the X-ray photoelectron spectroscopy (XPS). From a quantitative analysis of NEXAFS, the sp2/(sp2+ sp3) ratios of C atoms were evaluated as 67.9 ± 2.0, 55.4 ± 2.7, and 51.7 ± 0.7% for − VRF = 0, 60, and 100 V, respectively. From ERDA, hydrogen content of the film prepared under the condition of − VRF = 100 V was found to decrease 28% comparing with that under − VRF = 0 V. It is suggested that the cause of the increase of the film hardness when applying − VRF is predominantly the growth of the sp3-hybridized structure of C atoms accompanied by the decrease of hydrogen terminations.  相似文献   

2.
Crystallinity of poly(?-l-lysine) (?-PL) was discussed by analyzing the differences in the 1H spin-spin relaxation times (T2H), the 13C spin-lattice relaxation times (T1C), and the 13C NMR signal shapes between the crystalline and the non-crystalline phases. The observed 1H relaxation curve (free induction decay followed by solid-echo method) showed the sum of Gaussian and exponential decays. Similarly, the observed 13C relaxation curves obtained from the Torchia method were double-exponential. The 13C NMR spectrum of ?-PL was divided into the narrow and the broad lines by utilizing the intrinsic differences in the 1H spin-lattice relaxation times in the rotating-frame between them, which are attributed to the crystalline and the non-crystalline phases, respectively. Even though the crystallinity is obtained from the identical NMR measurements, the estimated values are different with each other. The crystallinity estimated from the T2H differences was 75.8 ± 0.1% at 333 K and 60.7 ± 0.4% at 353 K. From the T1C differences, the value was estimated to be 62 ± 11%. Furthermore, the value estimated from the NMR signal separation was 54 ± 5%. In this study we have explained these discrepancies by the difference in susceptibility among the experiments for the inter-phase, which exists in-between the crystalline and the amorphous phases. Furthermore, the estimated crystallinity was ascertained by the X-ray diffraction experiment.  相似文献   

3.
The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young's modulus and Poisson's ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3− octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete.  相似文献   

4.
Spontaneously adsorbed monolayers of [Co(ttp-CH2-SH)2](PF6)2 have been formed on platinum microelectrodes by exposure to micromolar solutions of the complex in 0.1 M TBABF4 in acetonitrile, ttp-CH2-SH is 4′-(p-(thiolmethyl)-phenyl)-2,2′:6′,2″-terpyridine. Resonance Raman spectroscopy on roughened polycrystalline platinum macro electrodes show that the molecule undergoes adsorption through the sulphur atom onto the platinum surface. The monolayers show reversible and well defined cyclic voltammetry when switched between Co2+ and Co3+ forms, with a peak to peak splitting of 0.040 ± 0.005 V up to 200 V s−1 and an FWHM of 0.138 ± 0.010 V. Adsorption is irreversible leading to the maximum surface coverage, 6.3 ± 0.3 × 10−11 mol cm−2 for 2.5 ≤ [Co(ttp-CH2-SH)2] ≤ 10 μM. The rate of monolayer formation appears to be controlled not by mass transport or interfacial binding but by surface diffusion of the complex. The surface diffusion coefficient is 5.5 ± 1.1 × 10−7 cm2 s−1 indicating that prior to formation of an equilibrated monolayer, the adsorbates have significant mobility on the surface. The electron transfer process across the monolayer-electrode interface has been probed by high speed chronoamperometry and the standard heterogeneous electron transfer rate constant, k°, is approximately 3.06 ± 0.03 × 104 s−1. The reorganization energy is at least 18.5 kJ mol−1.  相似文献   

5.
α- and β-Cyclodextrins cavity inclusion constants (Ki) were determined for a series of benzaldehydes and acetophenones by using two different methods: Benesi-Hildebrand (BH) UV/vis spectroscopic method and electrochemical current (EC) method, determined by cyclic voltammetry. The values determined in the group of benzaldehydes varied from 322 ± 27 to 5688 ± 317 mol−1 dm3 for UV/vis method, and 342 ± 19 to 7386 ± 142 mol−1 dm3 for EC method. The values determined in the group of acetophenones varied from 2201 ± 88 to 9125 ± 251 mol−1 dm3 for UV/vis method, and 1473 ± 33 to 7555 ± 187 mol−1 dm3 for EC method. The equilibrium time estimated for UV/vis spectroscopic (BH) method was 240 min and for the cyclic voltammetry (EC) method was 310 min. Notably, despite their limitations, both methods were suitable and reliable for inclusion constant measurement, if the equilibrium time of the system is well established.  相似文献   

6.
The formation constants of surface inclusion complexes were determined using a carbon paste electrode, CPE, and cyclic voltammetry for aqueous-based media containing Pb(II) and α, β and γ cyclodextrins. In order to promote the occupation of the molecular cavities in the cyclodextrins, the medium with the support electrolyte contained ClO4 ions, which have the capacity to modify the hydrophobic properties of such cavities. The results obtained were: Pb(II)-αCDK = 883.7 ± 13.6 M−1, Pb(II)-βCDK = 727.5 ± 20.2 M−1, Pb(II)-γCDK = 782 ± 10.7 M−1.  相似文献   

7.
This work is devoted to the kinetic study of densification and grain growth of LaPO4 ceramics. By sintering at a temperature close to 1500 °C, densification rate can reach up to 98% of the theoretical density and grain growth can be controlled in the range 0.6–4 μm. Isothermal shrinkage measurements carried out by dilatometry revealed that densification occurs by lattice diffusion from the grain boundary to the neck. The activation energy for densification (ED) is evaluated as 480 ± 4 kJ mol−1. Grain growth is governed by lattice diffusion controlled pore drag and the activation energy (EG) is found to be 603 ± 2 kJ mol−1. The pore mobility is so low that grain growth only occurs for almost fully dense materials.  相似文献   

8.
Lixia Li  Linda Zou  Gayle Morris 《Carbon》2009,47(3):775-10249
Capacitive deionization (CDI) represents an alternative process to remove the ions from the brackish water. In this study two series of ordered mesoporous carbons (OMCs) that demonstrated the potential use for capacitive desalination have been synthesized by a modified sol-gel process involving nickel salts. It was shown that the preferred formation of crown-ether type complexes between nickel ions and triblock copolymers resulted in higher BET surface area and smaller mesopores. As the electrode materials for CDI, OMC obtained by the addition of NiSO4 · 6H2O exhibited best electrochemical performance compared with other OMCs and a commercial activated carbon either in 0.1 M NaCl solution or in 0.0008 M NaCl solution, plus the amount of adsorbed ions measured by a flow through apparatus reached 15.9 μmol g−1 and the ions could be fully released into the solution. The excellent electrosorption desalination performance of OMC obtained by the addition of NiSO4 · 6H2O was ascribed to its high BET surface area of 1491 m2 g−1 and ordered mesopores of 3.7 nm. Based on these results, it is deduced that the modified sol-gel process might be a potential method of obtaining the excellent electrode materials for CDI.  相似文献   

9.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

10.
Instant active dry baker's yeast is a well-known product widely used for leavening of bread, produced by fermentation, and usually dried by hot air to 94-96% dry matter content. Multi-stage fluidized bed drying process is a commercial effective method for yeast drying. In this work, optimum operating parameters of an industrial continuous fluidized bed dryer for the production of instant active dry yeast were investigated. The dryer contained four zones separated with moving weirs. The operating conditions such as temperature, loading rate of compressed yeast granules, and hot air humidity had direct effects on both yeast activity and viability. The most important factors that affected the quality of the product were loading rate and the operational temperature in each zone on the bed. Optimization was performed for three loading rates of the feed to the dryer, using response surface methodology for the experimental design. The most significant factor was shown to be the loading rate with mean fermentation activity values of 620, 652, and 646 cm3 CO2/h for 300, 350, and 400 kg/h loading rates, respectively. The data analysis resulted in an optimal operating point at a loading rate of 350 kg/h and temperatures of zones 1, 2, 3, and 4 controlled at 33, 31, 31, and 29 °C, respectively. The best activity value was predicted as 668 ± 18 cm3 CO2/h, and confirmation experiments resulted in 660 ± 10 cm3 CO2/h. At the same operating point, the average viability of the cells was predicted as 74.8 ± 3.7% and confirmed as 76.4 ± 0.6%. Compared with the normal operating conditions at the plant, the optimization resulted in more than 12% and 27% improvement in the yeast activity and viability, respectively.  相似文献   

11.
Dieter Heymann 《Carbon》2005,43(11):2235-2242
The mean lifetimes of polyyne C8H2 in hexane were determined at 50, 60, 80, and 100 °C and in methanol at 60 °C. The reactions are second order at all temperatures: ln k2 = 20.5 ± 1.5-10303 ± 520T−1 and the corresponding activation energy is 85.7 ± 6.3 kJ mol−1 (7164 cm−1). Extrapolation suggests that solutions at 1 mM concentration are significantly unstable at room temperature. Quantum chemical calculations show that polyynes CmH2 + CnH2 (m + n = 16) could be products, but these were not detected. Alternatively, C16H2 isomers could form. IR spectra of the solid residues from hexane and methanol solutions were obtained.  相似文献   

12.
The thermal decomposition of the hydrogencarbonate ion has been previously described by a bimolecular mechanism or a unimolecular mechanism. In this work the Gibbs free energy of the competing reactions for both the unimolecular and bimolecular mechanisms was calculated for typical concentrations found in thermal desalination plants. Activity coefficients were estimated using the Pitzer equations. At low temperature the bimolecular mechanism is thermodynamically favored, while above 80 °C the unimolecular mechanism is favored, consistent with observations of alkaline scale formation in thermal desalination plants. The rate coefficient of thermal decomposition of HCO3 at 97.2 °C in the absence and presence of 10 ppm of poly(acrylic acid) (PAA) with different end groups and molar mass was determined. PAA was found to retard the rate of decomposition by up to 49% and for all end groups of PAA the rate coefficient of thermal decomposition of 40 ppm HCO3 increased with increasing molar mass. The results are consistent with PAA preventing heterogeneous decomposition of HCO3 on interfaces. The rate of partitioning of PAA to these interfaces should increase with decreasing molar mass and resulting mobility of PAA, and may also be affected by self-assembly behavior.  相似文献   

13.
Extraction of the fresh flowers of Michelia champaca L. with liquid CO2 provided a floral extract in 1.0 ± 0.04 wt% yields. The extract so obtained contains far less waxes and is organoleptically very superior. Similarly extraction with pentane gave the so-called ‘Concrete’ in 1.58 ± 0.06 wt%. While the concrete contains co-extracted floral waxes that make it unsuitable for blending with other perfumes, direct extraction with CO2 is an expensive process mainly due to low bulk density of flowers and their availability during short flowering season. On the other hand, fractionation of the concrete with liquid CO2 to separate the waxy components has provided solvent and almost wax free fractions. The duration of extractive fractionation has been optimized for selective extraction with liquid CO2 at 62 bar. These liquid CO2 fractions of concrete and liquid CO2 extract of flowers were analyzed by GC and GC/MS and their composition compared with that of concrete and partially de-waxed absolute obtained in the conventional way. The major fragrance compounds enriched in the direct liquid CO2 extract were methyl benzoate (11.5 ± 0.8%), phenyl ethyl alcohol (5.0 ± 0.6%), phenyl acetonitrile (10.4 ± 1.1%), indole (1.2 ± 0.3%), methyl anthranilate (1.3 ± 0.5%), E-β-ionone (1.5 ± 0.4%), and Z-methyl jasmonoate (1.0 ± 0.3%). The liquid CO2 fractionation of concrete is a practical process and the first fraction is comparable with direct liquid CO2 flower extract in terms of composition of the major compounds.  相似文献   

14.
The possibility of using the leaves of Cordia verbenacea as a new source of natural antioxidant compounds was investigated. In the present work, extracts from C. verbenacea were obtained using different extraction methods: supercritical fluid extraction (SFE), Soxhlet (SE), hydrodistillation and maceration, with the objective to evaluate the methods in terms of yield and antioxidant potential. The high-pressure technique was applied using pure CO2 and CO2 with co-solvent at different temperatures and pressures (30, 40 and 50 °C and 100, 200, and 300 bar). Organic solvents with different polarities were used to obtain extracts by low-pressure extraction processes. The extracts were evaluated according to their antioxidant activity using total phenolic content, scavenging abilities on DPPH radical, total antioxidant activities (ABTS•+), superoxide anion radical-scavenging (O2) and protection against lipid peroxidation in vitro (LPO). Ethyl acetate fraction obtained by maceration and extract isolated by SE using 25% aqueous mixture of ethanol possessed the highest scavenger activity against DPPH radical (IC50 = 9.2 ± 0.4 μg/ml, IC50 = 27.4 ± 0.1 μg/ml, respectively). The SFE with 8% ethanol as a co-solvent produced extracts with distinguished increase in the antioxidant activity. The Soxhlet extract with ethyl acetate exhibited a strong reduction of lipid peroxidation (IC50 = 209 ± 3 μg/ml) value comparable to the standard rutin (IC50 = 203 ± 2 μg/ml). The results indicate that extracts of C. verbenacea have important potential as a source of bioactive compounds with antioxidant activity.  相似文献   

15.
F. El-Gohary 《Desalination》2009,249(3):1159-149
This paper summarizes the results of disperse and reactive dyes wastewater treatment processes aiming at the destruction of the wastewater's color and chemical oxygen demand (COD) reduction by means of coagulation/flocculation (CF) followed by sequential batch reactor (SBR) process. The color removal efficiency of magnesium chloride aided with lime [MgCl2/CaO] was compared with that of alum [Al2 (SO4)3] and lime [Cao]. The experimental results showed that treatment with lime alone (600 mg/l) at pH value of 11.7 proved to be very effective. Color removal reached 100% and COD was reduced by 50%. Treatment with magnesium chloride aided with lime at pH value of 11 removed color completely and reduced the COD value by 40%. However, lime or lime in combination with magnesium chloride produced high amounts of sludge (1.84 kg/m3 for lime & 1.71 kg/m3 for MgCl2 aided with lime). Also, the pH of the treated effluent was around 11 and needs correction prior to discharge into sewer network. The use of 200 mg/l alum without pH adjustment removed 78.9% of the color. To improve the effectiveness of alum, the cationic polymer namely cytec was used as a coagulant aid. This significantly increased color removal from 78.9 up to 94% and COD reduction was around 44%. Moreover, sludge production was only 0.36 kg/m3. Chemically pre-treated effluent was subjected to SBR process at an HRT of 5.0 h. Residual CODtotal, total biochemical oxygen demand (BOD5 total) and total suspended solids (TSS) in the final effluent were 78 ± 7.7; 28 ± 4.2 and 17 ± 4.2 mg/l, corresponding to the removal efficiency of 68.2; 76.3 and 61.4% respectively. Furthermore, almost complete removal of CODparticulate and BOD5particulate has been achieved.  相似文献   

16.
Several phenols with structures similar to vitamin E were oxidised and the intermediate species produced were characterised by in situ infrared and UV-vis spectroscopies. The Fourier transform infrared (FTIR) measurements were performed by chemically oxidising the phenols with 2 mol equiv. of NO+SbF6 in CH3CN and recording the spectra between 1900 and 1300 cm−1 with an attenuated total reflectance (ATR) probe utilising a fiber conduit and a diamond composite sensor. The compounds that formed long-lived phenoxonium cations displayed two IR absorbances at 1665 (±15) cm−1 and one at 1600 (±10) cm−1 associated with the carbonyl, symmetric ring stretch and asymmetric ring stretch modes. The para-quinones are one of the long-term products of oxidation of the phenols, and displayed solution phase IR absorbances at 1650 (±10) cm−1. In situ electrochemical UV-vis experiments performed during the oxidation of the phenols led to the detection of bands due to the phenoxonium cations at 295 (±5) and 440 (±15) nm and due to the para-quinones at 260 (±10) nm. The concentration of the substrate and the water content of the solvent had a major effect on the yields of the intermediates and products that were produced during the oxidation reactions.  相似文献   

17.
Ethanol oxidation in subcritical water was examined at 25 MPa in the temperature range of 260-350 °C with equivalence ratio of 0.6. With oxygen as the oxidiser, the overall first-order decomposition reaction parameters were determined to be 102.9 ± 0.4 s−1 for the pre-exponential factor and 53.8 ± 4.6 kJ mol−1 for the activation energy. The products obtained by the hydrothermal oxidation of ethanol were acetaldehyde, acetic acid, carbon monoxide and carbon dioxide. First-order kinetics was enough to capture the main characteristics of species concentration profiles. Consecutive reaction network: C2H5OH → CH3CHO → CH3COOH → CO → CO2 well described the behaviour of components obtained from wet oxidation of ethanol.  相似文献   

18.
The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young's modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson's ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides.  相似文献   

19.
A promising cleaner approach, including chemical extraction, separation and purification by membranes separation technology, for producing ephedrine from Ephedra sinica Stapf was introduced. The extraction yield of ephedrine reached 92.45 ± 0.46%, increased by 28.25 ± 0.13% than that of the traditional process, at solid-to-liquid ratio of 1/10, extraction temperature of 80 °C, total extraction time of 20 h and reextraction for 3 times. In microfiltration, the transmissivity for ephedrine was up to 97.88 ± 1.06% and the retention rate of impurities reached 78.56 ± 0.96% when the membranes with pore size of 0.45 μm were employed at inlet and outlet operating pressure of 0.26 MPa and 0.14 MPa, respectively. The surface velocity of membrane channel was 3.5 m s−1 and membrane flux was 207 ± 3.71 l m−2 h−1. Nanofiltration membranes with 160 Da molecular weight cut-off (MWCO) were adopted to separate the ephedrine from microfiltration permeate at a transmembrane pressure of 0.6 MPa wherein the retention rate of ephedrine reached 99.88 ± 0.23% and the membrane flux was 19.88 ± 1.12 l m−2 h−1. For this improved approach, the COD of nanofiltration permeate was only 110 ± 12.56 mg l−1 which could be recycled to the extraction process, causing a decrease by 59.38 ± 1.67% of water consumption and 75.76 ± 1.89% of wastewater generation in comparison with those of the traditional process.  相似文献   

20.
The sticking probability, s, of CN(X2Σ+) radicals which were the precursor of the formation of amorphous carbon nitride films with high [N]/([N]+[C]) ratios (≤ 0.5) was re-evaluated. CN(X2Σ+) radicals were generated from the decomposition of BrCN with the microwave discharge flow of Ar of the pressure of 0.2-0.4 Torr. The number density of CN(X2Σ+), nCN(X), was evaluated from the intensity of the CN(A2Πi-X2Σ+) laser-induced fluorescence spectrum calibrated against Rayleigh scattering intensity of Ar. The weight of the C and N components of films, w, was evaluated from the compositional analysis for the deposited films using Rutherford back scattering and elastic recoil detection analysis. The [N]/([N]+[C]) ratios of films were 0.4-0.5. Based on nCN(X), w, and the flow speed measured by a time-resolved emission, s was evaluated both under the desiccated and H2O-added conditions as (8.5 ± 2.1) × 10− 2 − (6.1 ± 1.2) × 10− 2 and (11.4 ± 1.3) × 10− 2 − (7.4 ± 1.8) × 10− 2, respectively. The variation of s under various experimental conditions was discussed based on the electron densities in the reaction region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号