首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

2.
The transformation of sulphate minerals during pyrolysis of an Australian lignite has been studied using pure sulphates (CaSO4, FeSO4 and Fe2(SO4)3), a high mineral (HM) lignite sample and a low mineral (LM) lignite sample collected from different locations of the same deposit, and samples of acid-washed LM doped with sulphates (CaSO4+ LM and FeSO4+ LM), respectively. Thermogravimetric analysis and fixed-bed reactor techniques were used for the pyrolysis experimentation and the lignite samples and their chars were analysed using FTIR and XRD. The TGA experiments showed that CaSO4 decomposes between 1400 and 1700 K in nitrogen and a 50/50 N2/CO2 mixture, while in air CaSO4 decomposes between 1500 and 1700 K. Using a TGA-MS it was found that only a small fraction of CaSO4 in CaSO4+ LM decomposed at 653 K, releasing SO2. CaSO4 was still observed in the char recovered at 1073 K as confirmed by the FTIR and XRD analysis. FeSO4·7H2O released the bound water below 543 K and the remaining FeSO4 decomposed between 813 and 953 K. FeSO4 in FeSO4+ LM decomposed at 500 K to release SO2. The inherent sulphates in HM were dominated by iron sulphates which started to decompose and release SO2 at around 500 K and all sulphate had been decomposed at 1073 K. It was observed that during the fixed-bed pyrolysis at 1073 K in nitrogen, approximately 36% of the total sulphur in the CaSO4+ LM decomposed, 88% of the total sulphur in the FeSO4+ LM decomposed and around 76% of the total sulphur in HM decomposed. It was also confirmed that FeSO4+ LM produced more volatile sulphur than CaSO4+ LM during pyrolysis.  相似文献   

3.
In this work, treatment of an azo dye solution containing C.I. Basic Red 46 (BR46) by photoelectro-Fenton (PEF) combined with photocatalytic process was studied. Carbon nanotube-polytetrafluoroethylene (CNT-PTFE) electrode was used as cathode. The investigated photocatalyst was TiO2 nanoparticles (Degussa P25) having 80% anatase and 20% rutile, specific surface area (BET) 50 m2/g, and particle size 21 nm immobilized on glass plates. A comparison of electro-Fenton (EF), UV/TiO2, PEF and PEF/TiO2 processes for decolorization of BR46 solution was performed. Results showed that color removal follows the decreasing order: PEF/TiO2 > PEF > EF > UV/TiO2. The influence of the basic operational parameters such as initial pH of the solution, initial dye concentration, the size of anode, applied current, kind of ultraviolet (UV) light and initial Fe3+ concentration on the degradation efficiency of BR46 was studied. The mineralization of the dye was investigated by total organic carbon (TOC) measurements that showed 98.8% mineralization of 20 mg/l dye at 6 h using PEF/TiO2 process. An artificial neural network (ANN) model was developed to predict the decolorization of BR46 solution. The findings indicated that artificial neural network provided reasonable predictive performance (R2 = 0.986).  相似文献   

4.
In this work, phenol and oxalic acid(OA) degradation in an ozone and photocatalysis integrated process was intensively conducted with Fe~(3+)/TiO_2 catalyst. The ferrioxalate complex formed between Fe~(3+) and oxalate accelerated the removal of OA in the ozonation, photolysis and photocatalytic ozonation process, for its high reactivity with ozone and UV. Phenol was degraded in ozonation and photolysis with limited TOC removal rates, but much higher TOC removal was achieved in photocatalytic ozonation due to the generation of ·OH. The sequence of UV light and ozone in the sequential process also influences the TOC removal, and ozone is very powerful to oxidize intermediates catechol and hydroquinone to maleic acid. Fenton or photo-Fenton reactions only played a small part in Fe~(3+)/TiO_2catalyzed processes, because Fe~(3+) was greatly reduced but not regenerated in many cases.The synergetic effect was found to be highly related with the property of the target pollutants. Fe~(3+)/TiO_2 catalyzed system showed the highest ability to destroy organics, but the TiO_2 catalyzed system showed little higher synergy.  相似文献   

5.
Reactive dyes are extensively used in textile industry in the last years due to their superior performance, but they are environmentally hazardous and difficult to treat effectively by classical methods. In the present work, the decolorization and degradation of four commercial reactive azo dyes, namely Remazol Red RR, Remazol Yellow RR, Procion Crimson H-exl and Procion Yellow H-exl, were studied using photocatalytic processes (TiO2/UV and TiO2/UV/H2O2). Decolorization and degradation were found to strongly depend on the system parameters (TiO2 loading, dye and H2O2 initial concentrations, and pH). Decolorization efficiency (%) sharply increases with increasing the TiO2 loading, especially up to 1 g/L, as well as with decreasing the initial dye concentration from 250 down to 50 mg/L. At pH = 3, a > 90% decolorization of all dyes can be achieved in only 15 min. Addition of H2O2 increases the decolorization rates up to an optimum value (97.9% Remazol Red RR decolorization at 12 min irradiation, with a 0.5%w/w initial H2O2 concentration and pH = 3). Among the four dyes examined, significant differences in decolorization and degradation rates were revealed, but decolorization and degradation efficiencies up to 100% (in 25 min and 4 h respectively) are possible with proper combinations of the system parameters.  相似文献   

6.
In the current work removal of p-nitrophenol has been investigated using hydrodynamic cavitation, either operated individually or in combination with H2O2 and conventional Fenton process. In hydrodynamic cavitation, two different cavitating devices viz. orifice plate and venturi have been used. Effect of different operating parameters such as initial concentration (5 g/l and 10 g/l), inlet pressure (over a range 5.7–42.6 psi) and pH (over a range 2–8) on the extent of removal has been investigated. In conventional Fenton process two loadings of FeSO4, 0.5 g/l and 1 g/l were investigated and three ratios of FeSO4:H2O2 viz. 1:5, 1:7.5 and 1:10 were used. Removal observed with venturi was higher than with orifice plate in combination with Fenton chemistry. For 5 g/l initial concentration of p-nitrophenol, maximum removal of 63.2% was observed whereas for 10 g/l solution it was 56.2%.  相似文献   

7.
Ag nanoparticles highly dispersed into TiO2 thin films are synthesized via a remarkably simple one-pot route in the presence of a P123 triblock copolymer as template directing and reducing agents, where the reduction of Ag+ to Ag0 by in situ heat-induced reduction through the oxidation of template at 400 °C and the controlled polymerization of TiO2 take place simultaneously. The obtained mesoporous Ag/TiO2 films deposited on soda-lime glass were optically transparent and crack-free. SEM and Kr adsorption clearly prove that Ag/TiO2 films at different Ag contents are mesoporous with large surface area and regularly ordered mesopores and the thickness of the obtained films is ∼280 ± 20 nm. The pristine TiO2 film exhibits a specific surface area of 63 cm2/cm2 and specific pore volume of 0.013 mm3/cm2 that it is decreased to 42 cm2/cm2 and 0.010 mm3/cm2 respectively as a result of Ag-loaded mesoporous TiO2. The newly prepared photocatalysts Ag/TiO2 films were evaluated for their photocatalytic degradation of 2-chlorophenol as a model reaction. It was found that the meso-ordered Ag/TiO2 films are more photoactive 8 times than nonporous commercial photocatalysts Pilkington Glass Activ™. The recycling tests indicated that Ag/TiO2 films was quite stable during that liquid-solid heterogeneous photocatalysis since no significant decrease in activity was observed even after being used repetitively for 10 times, showing a good potential in practical application. In general, the cubic mesoporous Ag/TiO2 nanocomposites are stable and can be recycled without loss of their photochemical activity.  相似文献   

8.
The performance and economic cost of the removal of phenol with TiO2 photocatalysis, photo‐Fenton reactions, biological aerated filter (BAF), and constructed wetland (CW) reactors has been studied. The BAF achieved complete removal with a maximum phenol concentration of 200 mg·L?1. The BAF‐CW combination provided a phenol‐free effluent with a maximum phenol concentration of 650 mg·L?1. In both cases, a complete detoxification of the treated water was achieved at the concentrations studied. The efficiency of TiO2 photocatalysis was limited to concentrations below 50 mg L?1 to minimize removal reduction and toxicity of the intermediates. Photo‐Fenton was more efficient, but also more expensive because of the high cost of H2O2. The photo‐Fenton‐BAF combination is proposed to be the most suitable one.  相似文献   

9.
Qian Zhang 《Powder Technology》2011,212(1):145-150
TiO2 hollow spheres of controlled size were synthesized by combined acid catalytic hydrolysis and hydrothermal treatment, which involves the deposition of an inorganic coating of TiO2 on the surface of carbon spheres prepared by a hydrothermal method and subsequent removal of the carbon spheres by calcination in air. The obtained TiO2 hollow spheres were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and powder X-ray diffraction. The results revealed that the size and surface morphology of the TiO2 hollow spheres can be controlled by adjusting the concentration of the aqueous solution of glucose used to produce the template carbon spheres. Increasing the concentration of the glucose solution increased the average diameter of the TiO2 hollow spheres from 190 to 300 nm. TiO2 hollow spheres prepared using a glucose solution with a concentration of 0.7 mol/L are uniform in size with a diameter of 220 nm and shell thickness of 28 nm. The phenol removal rate of the sample prepared by calcination at 600 °C is 1.35 times higher than that of TiO2 made by the same method without using the carbon template.  相似文献   

10.
Jae-Hong Park 《Desalination》2009,249(2):480-1354
Photochemical degradation and relative toxicity reduction of agricultural wastewater contaminated with methyl 1-[(butylamino)carbonyl]-1H-benzimidazol-2-ylcarbamate (benomyl) by the sonophotocatalytic system was compared with that of the photocatalytic system. Under the optimal conditions, i.e., initial benomyl concentration was 3.2 mg/L, the concentration of TiO2 was 2 g/L and H2O2 concentration was 1.5 mM, the degradation rates with a sonication/UV/TiO2 system was about 1.5 times higher than with a UV/TiO2 system and sonication/UV/TiO2/H2O2 system was about 1.3 times higher than with a UV/TiO2/H2O2 system, respectively. Furthermore, the relative toxicity with a sonophotocatalysis was about 18% lower than with a photocatalysis within a reaction time of 120 min.  相似文献   

11.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

12.
Zhen Shu Liu 《Fuel》2005,84(1):5-11
This work evaluates both the removal efficiencies of HCl and SO2 at different points in a spray dryer using Ca(OH)2 as the absorbent. The operating conditions were specified in terms of the temperature of the flue gas (200-300 °C), the HCl concentration (120-1000 ppm), the SO2 concentration (150-500 ppm) and the amount of CaCl2 added (10-30 wt.%).The experimental results showed that the SO2 removal efficiencies were higher in the presence of HCl (120-500 ppm) than in the absence of HCl at 250 °C and 20% relative humidity (RH). However, the removal efficiency of SO2 decreased as the HCl concentration increased. The removal efficiency of SO2 also increased with the amount of CaCl2 in the spray dryer.  相似文献   

13.
Pure anatase TiO2 photocatalyst with different Ag contents was prepared via a controlled and energy efficient microwave assisted method. The prepared material was further characterized by several analytical techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface area measurement (BET), Fourier transform-infrared spectroscopy (FT-IR), diffused reflectance spectroscopy (DRS), and thermogravimetric–differential thermal analysis (TGA–DTA). A 10 nm average crystallite size with nano-crystals of pseudo-cube like morphology was obtained for optimal (0.25 mol%) Ag doped TiO2. The present research work is mainly focused on the enhancement of degradation efficiency of methyl orange (MO) by doping of Ag in TiO2 matrix using UV light (365 nm). A 99.5% photodegradation efficiency of methyl orange was achieved by utilizing 0.25 mol% Ag doped TiO2 (1 g/dm3) at pH=3 within 70 min. Recyclability of photocatalyst was also studied, with the material being found to be stable up to five runs.  相似文献   

14.
The effects of annealing temperature on the photocatalytic activity of nitrogen-doped (N-doped) titanium oxide (TiO2) thin films deposited on soda-lime-silica slide glass by radio frequency (RF) magnetron sputtering have been studied. Glancing incident X-ray diffraction (GIAXRD), Raman spectrum, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectra were utilized to characterize the N-doped TiO2 thin films with and without annealing treatment. GIAXRD and Raman results show as-deposited N-doped TiO2 thin films to be nearly amorphous and that the rutile and anatase phases coexisted when the N-doped TiO2 thin films were annealed at 623 and 823 K for 1 h, respectively. SEM microstructure shows uniformly close packed and nearly round particles with a size of about 10 nm which are on the slide glass surface for TiO2 thin films annealed at 623 K for 1 h. AFM image shows the lowest surface roughness for the N-doped TiO2 thin films annealed at 623 K for 1 h. The N-doped TiO2 thin films annealed at 623 K for 1 h exhibit the best photocatalytic activity, with a rate constant (ka) of about 0.0034 h−1.  相似文献   

15.
Asymmetric TiO2 hybrid photocatalytic ceramic membranes with porosity gradient have been fabricated via acid-catalyzed sol–gel method. Different structure directing agents (SDAs) i.e. Pluronic P-123, Triton X-100, Tween 20 and Tween 80 were incorporated in the preparation of TiO2 sol to obtain a porous multilayered TiO2 coated on the alumina ceramic support. Six different SDA-modified membrane specimens were fabricated. Four of which were coated with the TiO2 sols prepared using only one type of SDA. The remaining two specimens were fabricated via multilayer coating of different TiO2 sols prepared using different types of SDAs. Physico-chemical and morphological properties of different TiO2 layers were thoroughly investigated. The membrane M1 which had the most porous TiO2 sub-layers showed a high pure water permeability of 155 L m−2 h−1 bar−1. The membrane showed a relatively high Rhodamine B (RhB) removal of 2997 mg m−2 over 8 h treatment duration in the batch photoreactor, second only to the Pluronic-based TiO2 membrane (specific RhB removal of 3050 mg m−2). All membrane specimens exhibited good performances while operated in the flow-through photocatalytic membrane reactor. Over 91% of RhB removal capability was retained after 4 treatment cycles. All membranes also showed self-cleaning property by retaining >90% of initial flux after 4 treatment cycles. The flexibility of optimizing membrane performances by fine-tuning the porosity gradient configuration of the photocatalytic layer has also been demonstrated.  相似文献   

16.
Specific surface area change of ZrO2 (predominant tetragonal - (t) symmetry, 30-50 nm) and less refractory TiO2 anatase nanoparticles (20-50 nm) upon isothermal firing at 700-1000 °C in air was determined by N2 adsorption-desorption hysteresis isotherm. The nanoparticles underwent onset coarsening-coalescence within minutes without appreciable phase transformation for TiO2, but with extensive transformation into monoclinic (m-) symmetry for ZrO2. The apparent activation energy of such a process being not much higher for ZrO2 (77 ± 23 kJ/mol) than TiO2 (56 ± 3 kJ/mol) nanoparticles can be attributed to transformation plasticity. The minimum temperature for coarsening/coalescence of the present ZrO2 and TiO2 nanoparticles was estimated as 710 and 641 °C, respectively.  相似文献   

17.
The degradation of the organic content of a bleaching Kraft mill effluent was carried out using Advanced Oxidation Processes (AOPs). The study was focused on the identification of the AOP, or combination of AOPs, that showed the highest efficiency together with the lowest cost. Direct UV photolysis (UV), TiO2 assisted‐photocatalysis (TiO2/UV), Fenton, Fenton‐like, and photo‐Fenton reactions (Fe(II)/H2O/UV), UV‐assisted ozonation (O3/UV) and addition of Fe2+ and/or H2O2 to the TiO2/UV and the O3/UV systems, were used for the degradation of a conventional cellulose bleaching effluent. The effluent was characterized by the general parameters TOC, COD and color, and analyzed for chlorinated low molecular weight compounds using GC–MS. The costs of the systems per unit of TOC reduction were compared. Fenton, Fenton‐like and photo‐Fenton reactions achieved better levels of TOC degradation than photocatalysis and with lower cost's than photocatalytic treatments. Ozonation is an effective but rather expensive process. The use of UVA light, however, increased the effectiveness of ozonation with a significant decrease (>25%) in the operational cost. © 2002 Society of Chemical Industry  相似文献   

18.
FeTi alloy was prepared by a vacuum smelting method, iron titanium oxide nanotube arrays have been made directly by anodization of the FeTi alloy. Morphologies and microstructures of the samples were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffractometer. Influences of temperature and H2O concentration on the morphologies of the nanotube arrays have been discussed in detail. Magnetic properties of the samples have also been investigated. The as-prepared samples were amorphous. When annealed at 500 °C and 550 °C, pesudobrookite Fe2TiO5 was obtained. At 600 °C, there were mixed Fe2TiO5, rutile TiO2, and α-Fe2O3. Magnetic performance of the nanotube arrays exhibited high sensitivity to temperature and changed interestingly upon annealing. The values of the coercivity and remanence were 340 Oe and 0.061 emu/g respectively for the sample annealed at 550 °C.  相似文献   

19.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

20.
A new series of anatase TiO2 hollow structures were prepared by a facile hydrothermal process. When the hydrothermal time was increased from 20 min to 72 h, the resulting TiO2 solid spheres gradually transformed into TiO2 hollow spheres with higher surface crystallinity and exposed {001} facets. The as-prepared TiO2-72 h sample exhibited the highest activity comparing to other TiO2-based samples and commercial product Degussa P-25 towards the selective photocatalytic oxidation of toluene to benzaldehyde. Such great photocatalytic performance was mainly attributed to enhanced UV-adsorption and better charge separation efficiency due to higher surface crystallinity of TiO2-72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号