首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(16):2548-2556
The novel cellulose resin crosslinked with perylene tetracarboxylic diimides 3 was synthesized and its structure was characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electronmicroscopy (SEM), etc. Dyes adsorption experiments of polymer 3 suggested that it exhibited excellent adsorption capacities for tested four cationic and anionic dyes [Orange G sodium salt (OG), Brilliant ponceau 5R (BP), Methylene blue (MB), and Crystal violet (CV)]. The adsorption capacities for OG, BP, MB, CV were as high as 1.04, 1.21, 1.14, and 0.96 mmol/g, respectively. The adsorption processes obeyed the pseudo second-order model and followed the Langmuir isotherm equation. The adsorption processes were exothermic and spontaneous. The pH = 2 ? 12 made slight influences on adsorption capacities of polymer 3 for dyes. It was supposed that the adsorption mechanism was not only the electrostatic forces and hydrogen bond but also the π-π stacking interaction playing an important role in the adsorption processes.  相似文献   

2.
Xinhong Chang  Xiuling Jiao 《Polymer》2010,51(16):3801-206
Environmentally green carbon aerogels have been prepared as adsorbents for dye-containing wastewater. The aerogels were prepared by carbonization of starch aerogels synthesized from soluble starch through a sol-gel process followed by drying at ambient pressure. The Brunauer-Emmett-Teller (BET) surface areas and pore size distribution were measured by N2 adsorption/desorption, and the surface zeta-potential and microstructure of carbon aerogels were characterized using a scanning electron microscope (SEM) and zeta-potential analyzer. SEM images indicate that the carbon aerogels consist of flakes with side length of 60-120 μm and thickness of 3-4 μm. The flakes are irregular in shape and composed of spherical carbon nanoparticles of 10-30 nm. The carbon aerogels have both microporous and mesoporous structures and exhibit high specific surface areas, the highest value is 1571 m2/g. The mean diameter of the micropores is 0.89 nm and that of the mesopores is 2-10 nm. At pH = 10, the carbon aerogels have a zeta-potential of −40 mV and exhibit high adsorption capacities for cationic dyes, such as crystal violet (CV), methyl violet (MV) and methylene blue (MB), from aqueous solution. The largest adsorption capacities for CV, MV and MB are 1515, 1423 and 1181 mg/g, respectively.  相似文献   

3.
Heteropoly blue-intercalated layered double hydroxide (HB-LDH) was obtained by aqueous ion exchange of a Zn–Al LDH precursor in nitrate form with the reduced polyoxometalate anions [PW10Mo2O40]5?. The physicochemical properties of the product were characterized by the methods of powder X-ray diffraction, infrared spectroscopy, and cyclic voltammetry. The HB-LDH has been used for the removal of cationic dye methylene blue (MB) from aqueous solutions via adsorption. The intercalation of large cluster anion [PW10Mo2O40]5? into LDH could induce the adsorption to cationic dye of MB, obviously. The HB-LDH shows much higher cationic dye adsorption capacity than pure LDH and the maximum adsorption capacity Qmax of MB onto ZnAl–PW10Mo2 is 30.87 mg/g.  相似文献   

4.
《Ceramics International》2020,46(3):2960-2968
MXene and metal organic framework (MOF) were used as the main adsorbents to remove synthetic dyes from model wastewater. Methylene blue (MB) and acid blue 80 (AB) were used as the model cationic and anionic synthetic dyes, respectively. To investigate the physicochemical properties of the adsorbents used, we carried out several characterizations using microscopy, powder X-ray diffraction, a porosimetry, and a zeta potential analyzer. The surface area of MXene and MOF was 9 and 630 m2 g−1, respectively, and their respective isoelectric points were approximately pH 3 and 9. Thus, MXene and MOF exhibited high capacity for MB (~140 mg g−1) and AB (~200 mg g−1) adsorption, respectively due to their electrostatic attractions when the concentrations of the adsorbents and adsorbates were 25 and 10 mg L−1. Furthermore, the MOF was able to capture the MB due mainly to hydrophobic interactions. In terms of the advantages of each adsorbent according to our experimental results, MXene exhibited fast kinetics and high selectivity. Meanwhile, the MOF had a high adsorption capacity for both MB and AB. The adsorption mechanisms of both adsorbents for the removal of MB and AB were clearly explained by the results of our analyses of solution pH, ionic strength, and the presence of divalent cation, anion, or humic acids, as well as other characterizations (i.e., Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy). According to our results, MOF and MXene can be used as economical treatments for wastewater containing organic pollutants regardless of charge (e.g., MB and AB), and positively charged one (e.g., MB), respectively.  相似文献   

5.
《分离科学与技术》2012,47(3):452-459
In this study, pyromellitic dianhydride (PMDA) modified waste sugarcane bagasse (SCB) was prepared through a simple method to remove two cationic dyes: methylene blue (MB) and malachite green (MG) from aqueous solution. Adsorption performances of MB and MG on the modified sorbent were investigated in details. The adsorption capacities of the modified SCB for MB and MG were 571.4 and 377.4 mg g?1, respectively, which were 10 and 12 times than that obtained on the unmodified SCB. Adsorption kinetics study showed equilibriums were obtained after adsorption for 13 hours for both dyes. The modified SCB could be used repeatedly after regeneration. FTIR results showed that carboxyl and hydroxyl groups on the modified SCB involved in adsorption process.  相似文献   

6.
Adsorption of cationic dye from aqueous solutions by activated carbon   总被引:1,自引:0,他引:1  
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.  相似文献   

7.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Mingfei Zhao 《Desalination》2009,249(1):331-203
The modified expanded graphite (MEG) powder was used as a porous adsorbent for the removal of the cationic dye, methylene blue (MB), from aqueous solutions. The dye adsorption experiments were carried out with the bath procedure. Experimental results showed that the basic pH, increasing initial dye concentration and high temperature favored the adsorption. The dye adsorption equilibrium was attained rapidly after 5 min of contact time. Experimental data related to the adsorption of MB on the MEG under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k1), the rate constants of second-order adsorption (k2) and intraparticle diffusion rate constants (kint) were calculated, respectively. The experimental data fitted very well in the pseudo-second-order kinetic model. The thermodynamic parameters of activation such as Gibbs free energy, enthalpy, and entropy were also evaluated. The results indicated that the MEG powder could be employed as an efficient adsorbent for the removal of textile dyes from effluents.  相似文献   

9.
In the present study, synthesis of poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite with different amount of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker was successfully carried out for the removal of crystal violet (CV), methylene blue (MB) and methyl red (MR) from aqueous solution. Hydrogel nanocomposite was characterized by FT-IR, SEM, EDS, XRD and TGA analysis. Several important parameters were investigated to obtain maximum adsorption capacity. Adsorption behavior of hydrogel nanocomposite was investigated for the adsorption of dyes and it was found to remove about 80% for CV, 89% for MB and 51% for MR in 50 mg/L of dyes solutions at pH 7 and about 86% for CV, 93% for MB and 23% for MR at pH 12. Kinetic studies revealed that the applicability of pseudo-first-order and pseudo-second-order model for the adsorption of CV, MB and MR. The adsorption isotherm was studied in 25, 35, 45 and 55 °C using Langmuir, Freundlich, Temkin and Jovanovic models and the adsorption data were well described by Freundlich isotherm model. Hydrogel nanocomposite showed 155, 176 and 113 mg/g maximum adsorption capacity for CV, MB and MR respectively. Negative values of ΔG0 for all three dyes suggested the feasibility of dyes removal and support for spontaneous adsorption of CV, MB and MR on hydrogel nanocomposite. Desorption of dyes from the dye loaded hydrogel nanocomposite was simply done in ethanol. The results indicate that the prepared poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes.
Graphical abstract Graphical abstract illustrating the preparation and dye adsorption processes of the poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite
  相似文献   

10.
The kinetic and thermodynamic behaviors of cationic dye adsorption onto citric acid esterifying wheat straw (EWS) from aqueous solution were investigated. Two cationic dyes, methylene blue (MB) and crystal violet (CV) were selected as adsorbates. The kinetic and thermodynamic parameters of dye adsorption were examined with a batch system by changing various experimental factors (e.g. initial pH, EWS dosage, dye concentration, contact time, temperature). The MB and CV removal ratios came up to the maximum value beyond pH 4. The 2.0 g/L or up of EWS could almost completely remove MB and CV from 250 mg/L of dye solution. The adsorption percentages of MB and CV kept above 95% over a range from 50 to 350 mg/L of dye concentration when 2.0 g/L of EWS was used. The isothermal data followed the Langmuir model. The adsorption processes could be described by the pseudosecond-order kinetic model. The dual linear plots of intraparticle diffusion indicated that two intraparticle diffusion steps occurred in the dye adsorption processes. The thermodynamic study indicated that the adsorptions of dyes were spontaneous and endothermic. High temperatures favored the adsorption processes.  相似文献   

11.
以偏高岭土和改性水玻璃为原料,采用分散悬浮固化法制备偏高岭土基地质聚合物微球(GM)。使用扫描电子显微镜、比表面积及孔径分布测试仪、傅里叶变换红外光谱仪和X射线粉末衍射仪对其进行结构表征,并研究了GM对亚甲基蓝的吸附性能。结果表明:GM对亚甲基蓝的吸附基本符合准二级动力学模型和Langmuir吸附等温线模型,333 K时最大理论吸附量为100.1 mg/g。GM对亚甲基蓝的吸附是自发吸热过程。使用后的GM在5次循环利用后,GM对MB的去除率仍然可达81.56%,易于回收和再生。分析了GM对不同阴阳离子型染料的吸附效果,结果表明,GM对阳离子型染料具有选择性吸附。GM是一种低价、有效、绿色、可循环利用的吸附剂,可用于去除水中阳离子型染料污染物。  相似文献   

12.
Summary Super swelling acrylamide (Am)/N-vinylpyrrolidone (NVP)/3-(2-hydroxyethyl carbamoyl) acrylic acid (HECA) hydrogels were prepared by free radical polymerization of quaternary mixtures of Am, NVP, HECA and water. The hydrogels were used in experiments on swelling, diffusion and adsorption of some water-soluble monovalent cationic dyes such as Crystal Violet (CV), Malachite Green (MG) and Methylene Blue (MB). In the experiment of the adsorption of dyes from their aqueous solutions type-S adsorption isotherm were found. The diffusion of water within the hydrogel was found to have non Fickian character. The uptake of dyes within the hydrogel increased in the following order: MG > MB > CV. The binding ratio of the hydrogel/dye systems was gradually increased with the increase of HECA content in the AAm/NVP/HECA hydrogel.  相似文献   

13.
Synthetic dyes are widely used by several industries to color their products. The discharge of colored wastewater into the hydrosphere causes serious environmental problems. We used functionalized multi wall carbon nanotubes as an adsorbent for the adsorption of cationic dye, malachite green, from aqueous solution. Based on information provided by the Iranian Research Institute of Petroleum Industry, carbon nanotubes are produced using a chemical vapor deposition (CVD) technique. These as-received MWCNTs were functionalized by acid treatment. The remaining dye concentration was read by UV-visible absorption spectroscopy at maximum adsorption wavelength. The effect of different operational parameters such as contact time, pH of solution, adsorbent dose and initial dye concentration were studied. The results showed that by increasing of contact time, pH and adsorbent dose the removal of dye increased, but by increasing initial dye concentration, the removal efficiency decreased. Adsorption isotherms and kinetics behavior of f-MWCNTs for removal of malachite green was analyzed, and fitted to various existing models. The experimental data were well correlated with the Langmuir isotherm with a maximum adsorption capacity (q m ) and regression coefficient (R2) of 142.85 mg/g and 0.997, respectively. The results of this study indicate that functionalized multi wall carbon nanotubes can be used as an effective adsorbent for the removal of dyes.  相似文献   

14.
The preparation of poly(methacrylic acid)‐modified chitosan microspheres and its application for the removal of cationic dyes, methylene blue (MB) and malachite green (MG), in aqueous solution in a batch system were described. The modified chitosan was characterized using SEM, FTIR, and XPS analyses. The effects of the pH of the solution, contact time, and initial dye concentration were studied. The adsorption capacities of the microspheres for the two cationic dyes increased significantly after the modification because a large number of carboxyl groups were introduced. The equilibrium process was better described by the Langmuir than the Freundlich isotherm. According to the Langmuir equation, the maximum adsorption capacities were 1000.0 and 523.6 mg g?1 for MB and MG, respectively. Kinetic studies showed better correlation coefficients for a pseudo‐second‐order kinetic model, confirming that the sorption rate was controlled by a chemisorption process. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Nanostructured chitosan/polyaniline (CH/PANI) hybrid was synthesized via in situ polymerization of aniline in the presence of chitosan. The CH/PANI hybrid was characterized by FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The CH/PANI hybrid had a nanofibrous structure with an average diameter of 70 nm. This hybrid was employed as an ecofriendly and efficient adsorbent with high adsorption capacity for the removal of Acid Green 25 (AG) and methylene blue (MB) from aqueous solutions. AG and MB were used as anionic and cationic model dyes, respectively. The CH/PANI adsorbent showed high dependence on the pH of the medium with an excellent adsorption performance and regeneration manner. The kinetics and adsorption isotherms were studied. The CH/PANI hybrid follows the pseudo second-order adsorption kinetics and Temkin isotherm model for the adsorption of both AG and MB dyes. This assumes that the enthalpy of dyes molecules decreases with the adsorption on heterogeneous surface with various kinds of adsorption sites and as well as the ability to form multilayers of the dye. Also, intraparticle diffusion was found to play an important role in the adsorption mechanism. The maximum adsorption capacity was found to be 240.4 mg g−1 of AG at pH 4 and 81.3 mg g−1 of MB at pH 11. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47056.  相似文献   

16.
《Ceramics International》2023,49(10):15507-15526
In present investigation, gCN supported carbon coated Lanthanum doped tungsten oxide (C@LWO/gCN) composite were synthesized via hydrothermal approach. The photodegradation of different cationic dyes like malachite green (MG), crystal violet (CV) and methylene blue (MB) has been carried out under prepared C@LWO/gCN composite. Furthermore, the comparative photodegradation was also performed using pristine LWO and C@LWO nanowires. The synthesized samples were characterized via physiochemical techniques such as XRD, FESEM, EDX, FTIR, BET and UV/Vis spectroscopy. The results proved incorporation of La ions into WO3 lattice and reduced band gap of doped sample which significantly boost up the capability of the material towards photodegradation. The maximum degradation was found out at pH = 6, 5 mg catalyst dose, 5 ppm dye concentration and 35 °C temperature. The achieved results proved that the trapping agents compete with prepared composite specie for the h+, e, HO and O2●- radicals. The obtained experimental records of photodegradation of cationic dyes using C@LWO/gCN composite has correlation with pseudo first order kinetics, Langmuir-Hinshelwood model and t1/2. The simplest facile synthetic approach, remarkable photodegradation performance against colored and colorless effluents suggest that C@LWO/gCN composite exhibit great potential for large-scale wastewater treatment.  相似文献   

17.
ABSTRACT

A three-dimensional (3D) porous graphene oxide/polyacrylic acid (GO/PAA) aerogel with double network skeleton was assembled by in situ solution polymerization method toward removing multi-cationic dyes from wastewater, such as methylene blue (MB), crystal violet (CV), methyl orange (MO), and rhodamine B (RhB), in which the adsorption capacities for CV and MB were 851.31 and 771.14 mg g?1, respectively. This composite showed outstanding adsorption capacity due to the structure of 3D double network skeleton, large specific surface area, and remarkable carboxyl group content.  相似文献   

18.
采用静电纺丝技术制备醋酸纤维素纳米纤维膜,用氢氧化锂水解后得到纤维素纳米纤维膜。通过3-氯-2-羟丙基三甲基氯化铵(CHPTAC)和一氯乙酸共同改性,制备了双性纤维素纳米纤维膜。利用紫外分光光度计测试双性纤维素纳米纤维膜对茜素绿(AG25)和亚甲基蓝(MB)的吸附性能,并考察了pH、温度、染料初始浓度对吸附量的影响。结果表明,双性纤维素纳米纤维膜对AG25和MB染料的最大吸附量分别达到 240 mg/g和 128 mg/g,并且对两种染料在第4个循环时仍保持84%的吸附效率。同时,发现pH是影响双性纤维素纳米纤维膜的染料吸附性能的关键因素,在吸附没有饱和之前,染料吸附量随着染料浓度的增加而增加,而吸附效果对温度没有依赖性。  相似文献   

19.
An innovative pilot plant based on UVB and TiO2 (Anatase) allowed for photocatalytic degradation of organic micro-pollutants. The catalyst was immobilized onto a channel through which the solution containing a target molecule (methylene blue, MB) was re-circulated. Due to the cationic nature of the MB substrate, the adsorption reaction onto the catalyst surface provided a significant contribution to the overall degradation mechanism due to the negatively charged surface at neutral pH (TiO2 pHzpc = 6.8). The influence of the initial MB concentration was investigated in the range 0.3–2.0 mg L?1 with the Langmuir–Hinshelwood (LH) model showing good data correlations at concentrations up to 0.7 mg L?1, whereas at higher concentrations a pure zero-order (catalytic) kinetic trend was observed. Flow rate of the re-circulating solution sensibly influenced kinetics after the larger volumes of liquid exposed to UVB/TiO2 and to the better oxygen saturation in the liquid phase. UV?vis and HPLC-MS/MS experimental determinations allowed for identification of MB residual concentration and by-products.  相似文献   

20.
Abstract

This work focused on producing different graphene oxide (GO) samples for further application in the adsorptive removal of dyes from real textile wastewater. Among all conditions tested, the sample produced using KMnO4 and no sonication bath exhibited the best performance. Before the experiments using wastewater, kinetics and equilibrium of adsorption studies were performed with Methylene Blue (MB) dye. Experimental data showed the isotherm fitted the Freundlich model, and kinetic results fitted the pseudo-second order model. Theoretical qmax was 308.11?mg.g?1 and over 90% removal of MB was reached in approximately 5?min. Although GO has been widely applied to remove cationic and anionic dyes from water, not many studies have presented GO as an adsorbent for real textile wastewater treatment. In 30?min, GO removed nearly 85% of turbidity and over 60% of color from a real sample, indicating that GO might be an excellent alternative to treat textile wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号