首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
饮用水除砷吸附剂的研究进展   总被引:1,自引:0,他引:1  
砷在水体中主要以As(Ⅲ)和As(Ⅴ)的无机酸形式存在,对人体的危害很大,吸附法是国内外研究最广泛的饮用水除砷技术之一.详细说明了饮用水除砷的吸附剂类型,指出:复合材料效率高、费用低,目前应用最为广泛;纳米材料与砷结合后性质稳定,除砷效率最高,是今后的主要发展方向;生物吸附材料以其高吸附率、低成本成为研究的热点.  相似文献   

2.
3.
We developed a potentially high-performance adsorbent for sustainable treatment of soluble inorganic trace phosphate from water by zirconium(IV) loaded bifunctional fibers. In the presence of common Cl and SO42−, phosphate adsorption was not adversely affected but slightly enhanced due to co-ion and Donnan invasion mechanism. Trace phosphorus (0.0143 mM) was also removed in presence of relatively high amounts of competing anions at high feed flow rate (850 h−1). In competitive arsenate and phosphate adsorption, this novel adsorbent slightly preferred phosphate to arsenate. The adsorbent is reversible and keeps remaining functionality to further reuse in many cycles.  相似文献   

4.
Wollastonite was used as an adsorbent for the removal of Fe(II) at different experimental conditions. The extent of removal is favourable at low concentration and low temperature. Maximum adsorption was noted at pH 4.0. The batch adsorption kinetics has been described by a first order rate expression, and the surface mass transfer coefficients and diffusion coefficients have been calculated at different temperatures. The intraparticle transport of Fe(II) within the pores of wollastonite is found to be the rate limiting step. The applicability of the Langmuir isotherm for the present system has been tested at different temperatures. Thermodynamic parameters indicate the exothermic nature of Fe(II) adsorption on wollastonite. The variation of adsorption with pH has been explained on the basis of interaction of iron species with negatively charged constituents of adsorbent.  相似文献   

5.
The removal of arsenic from synthetic waters and surface water by nanofiltration (NF) membrane was investigated. In synthetic solutions, arsenic rejection experiments included variation of arsenic retentate concentration, transmembrane pressure, crossflow velocity and temperature. Arsenic rejection increased with arsenic retentate concentration. Arsenic was removed 93-99% from synthetic feed waters containing between 100 and 382 μg/L as V, resulting in permeate arsenic concentrations of about 5 μg/L. Under studied conditions, arsenic rejection was independent of transmembrane pressure, crossflow velocity and temperature. In surface water, the mean rejection of As V was 95% while the rejection of sulfate was 97%. The co-occurrence of dissolved inorganics does not significantly influence arsenic rejection. The mean concentration of As in collected permeated was 8 μg/L. The mean rejection of TDS, total hardness and conductivity were 75, 88 and 75% respectively.  相似文献   

6.
Humic acid (HA) was carbonized at 300, 400 and 500 °C and then functionalized with 1 wt%–12 wt% Fe(III) respectively [CHA300/400/500-Fe(III)]. Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline (TC: 25 mg·L−1) was studied. The adsorption equilibrium time for CHA400-Fe(III) to TC was 6 h faster and the adsorption removal efficiency (Re) was two times higher than that of HA/CHA. The adsorption Re of CHA400-Fe(III) loaded 10% iron [CHA400-(10%)Fe(III)] to TC could reach 99.8% at 8 h and still kept 80.6% after 8 cycles. The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R2 > 0.99), indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents. The main adsorption mechanisms of TC were complexation Fe(III) and hydrophobic distribution. Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(III) at lowly pH(2) and highly pH(8–10) respectively, leaded to the relatively low adsorption capacity and more notable influence of ion concentration. When the pH was between 4 and 8, TC mainly existed in neutral molecules (TCH2), so the influence of ion concentration was not obvious. The dynamic adsorption results showed that the CHA400-(10%)Fe(III) could continuously treat about 2.4 L TC(27 mg·L−1) wastewater with the effluent concentration as low as 0.068 mg·L−1. Our study suggested a broad application prospect of a new, effective, low-cost and environment-friendly adsorbent CHA400-(10%)Fe(III) for treatment of low-concentration TC polluted wastewater.  相似文献   

7.
A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4–9), current density (2.5–7.5 A m−2), initial concentration (75–500 μg L−1) and operating time (0–15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m−2, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 € m−3 for Fe and 0.017 € m−3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L−1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.  相似文献   

8.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   

9.
An investigation was conducted on the adsorption and desorption of copper(II) from aqueous solutions with a new spherical cellulose adsorbent containing the carboxyl anionic group. Various factors affecting the adsorption were optimized. The adsorption of Cu2+ ions on the adsorbent was found to be dependent on the initial time and pH, the concentration, and the temperature. The adsorption process follows both Freundlich and Langmuir adsorption isotherms and was found to be endothermic (ΔH = 23.99 kJ/mol). The Cu2+ ions adsorbed on the adsorbent can be recovered with a NaOH or HCl aqueous solution. The maximum percentage of recovery is about 100% when 2.4 mol/L HCl solution is used. In addition, only 7.2% of the adsorption capacity is lost after 30 replications of the adsorption and desorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 478–485, 2002; DOI 10.1002/app.10114  相似文献   

10.
A series of adsorption studies was carried out on a glycidyl methacrylate‐ modified cellulose material functionalised with imidazole (Cellulose‐g‐GMA‐Imidazole) to assess its capacity in the removal of Ni(II) ions from aqueous solution. The study sought to establish the effect of a number of parameters on the removal of Ni(II) from solution by the Cellulose‐g‐GMA‐Imidazole. In particular, the influence of initial metal concentration, contact time, solution temperature and pH were assessed. The studies indicated a Ni(II) uptake on the Cellulose‐g‐GMA‐Imidazole sorbent of approximately 48 mg g?1 of nickel from aqueous solution. The adsorption process fitted the Langmuir model of adsorption and the binding process was mildly endothermic. The kinetics of the adsorption process indicated that nickel uptake occurred within 400 min and that pseudo‐second order kinetics best describe the overall adsorption process. Nickel(II) adsorption, recovery and re‐adsorption studies indicated that at highly acidic pH values the adsorbent material becomes unstable, but in the range pH 3–6, the adsorbent is stable and shows limited but significant Ni(II) recovery and re‐adsorption capability. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
A specially designed electro-cross-flow nanofiltration (NF) membrane system was used for this investigation. To enhance the rejection of arsenic ionic species like H2AsO4, a NF membrane having a negative surface charge was fabricated via the interfacial polymerization process. The membrane was characterized by SEM, AFM, surface charge density, molecular weight cut-off (MWCO), total and skin thickness and pure water flux. The parameters that affected the rejections of As(III) and As(V) were studied; they included the initial arsenic concentration, the applied potential, pH of the feed, the cross-flow filtration pressure and the presence of different salts in the feed. Among those parameters, the pH of the feed greatly affected As(V) rejection; As(V) ([As(V)]o = 1000 ppb) rejection was increased from 72.3 to 98.5% when pH of the feed was changed from 3.0 to 10.0. This might be due to the fact that higher pH enhanced the formation of negative divalent anion like HAsO42− which should be rejected more effectively by the negative surface charge of the NF membrane. Beside the effect of the negative surface charge of the membrane, applied potential increased the As(V) rejection by 48.2% when the applied potential was increased from 0 to 2.0 V for a feed containing 1000 ppb initially. For the same change of applied potential rejection of As(III) was increased from 52.3 to 70.4%; this might be the result of the formation of anionic species like H2AsO3 from the neutral molecule of H3AsO3 by the applied potential.  相似文献   

12.
The effective removal of arsenic compounds from strongly contaminated mining water with a high content of As (about 50 mg/l) and other metals, especially iron (about 5000 mg/l) has been studied. The process ran in two steps. At first, the raw acid mining water containing predominantly Fe2+ ions was partially precipitated with a small amount of an alkaline agent. On a small portion of the precipitated iron (about 30–40%), more then 90% of the arsenic was adsorbed forming a toxic precipitate, which was then stirred under an inert agent (Ar) and further in air for 1 h. Secondly, the precipitation of the first step liquid residue (using the same or a different alkaline agent) enabled the final treatment of the mining water at pH 8.5. While arsenic was substantially removed by the first precipitation, the other components including residual iron, manganese, zinc and sulfates were precipitated quantitatively during the second step. The mass of the second precipitate depended strongly on the alkaline agent used in the second step.The mechanism and kinetics of arsenic sorption onto iron species, and phase changes of the sorbent during the sorption process were investigated. The composition of the precipitates was verified by XRD and XRF analyses, as well as by infrared and Raman spectroscopy. The precipitation of a raw mining water resulted in formation of a complex inorganic system where amorphous phases dominated. Various crystalline phases, predominantly concerning Fe(II)–Fe(III), As, Zn and sulfates also appeared, depending on the actual oxidizing state of the whole system and on redistribution of its components.The two-step precipitation of arsenic contaminated mining water results in a significant ecological and economical improvement due to the decrease in the amount of waste toxic mass.  相似文献   

13.
Biological sources are renewable basic resources that may be used for several purposes, including the development of green materials for the removal of heavy metal ions. Cellulose nanocrystals (CNCs) extracted from waste papers via acid hydrolysis were modified and utilized as adsorbents to remove Cr (VI) ions from metallurgical effluent in this work. X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and zeta potentiometer were used to characterize the CNCs. The CNCs treated with succinic anhydride and ethylenediaminetetraacetic acid tetrasodium salt have thin particle sizes and are porous. The carboxylate functional group is primarily engaged in the coordination and selective removal of metal ions (–COO2−) and thermal degradation of 85%, observed at temperatures between 250–380°C. On the surface of the modified CNCs, the zeta potential data showed a decrease in negative value. The results revealed that the modified CNCs had a maximum adsorption capacity of 387.25 ± 0.88 mg L−1 at pH 5, at CNCs doses of 25 and 400 mg L−1 as starting concentrations. The adsorption equilibrium period was 300 min and the temperature was 313 K. The equilibrium results fit the Langmuir isotherm model with an R2 of 0.993 and a qmax of 340 ± 0.97. The Chi-square (X2) and Marquardt's percent standard deviation tests confirmed that the adsorption process was pseudo-second-order with an R2 of 0.998, and the Elovich model revealed that Cr (VI) complexed with the adsorbent's functional groups. The reaction was endothermic due to positive ΔH and spontaneous due to negative ΔG. The positive ΔS indicates that the adsorption process enhances the unpredictability of the solid/liquid interface, according to thermodynamic analysis. After acid treatment, the CNCs may be effectively reused for six cycles with an adsorption capacity of 220 ± 0.78 mg g−1.  相似文献   

14.
Although fluoride is beneficial for human beings in small quantities, it causes dental fluorosis when consumed in larger quantities over a period of time. In recent years, considerable work has been conducted for the purpose of developing new and low cost absorbents for adsorptive removal of fluoride, especially chelating resins loaded with metal ions. In the present study, several types of adsorbents with different functional groups loaded with lanthanum(III) were prepared to be used for fluoride removal from water. The optimum conditions for loading lanthanum(III) on the adsorbents and the effects of pH and initial fluoride concentration as well as shaking time and solid–liquid ratio on the removal of fluoride have been investigated. Based on these fundamental data, the removal of fluoride from actual hot spring water was also tested as a practical application by comparing the efficiency of different adsorbents for the removal of fluoride from hot spring water. The following conclusions were obtained. (1) The different chemical composition and chemical structure of the polymer matrix play the most important role in fluoride adsorption, (2) strongly acidic adsorbents are more effective on fluoride removal at neutral pH than weakly acidic adsorbents, (3) the order of fluoride removal in the neutral pH range of 4.5–8.0 by the different La(III)‐loaded adsorbents employed in the present work is as follows: 200CT resin > POJRgel > IR124resin > SOJR gel ≥ CPAgel ≥ WK11 resin. The column experiments showed that the 200CT resin loaded with lanthanum(III) at pH 6.0 can be successfully employed for the removal of fluoride ions from actual hot spring water. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(9):1419-1429
The adsorption behavior of As(III) as a function of pH on an iron oxide impregnated activated carbon (FeAC) at different adsorbate/adsorbent concentrations was modeled using the surface complexation modeling approach (SCM). The surface complexation constants developed from single sorbate experiments successfully predicted competition between As(V) and As(III) and the SCM predictions were verified experimentally. The monoprotic surface site representation described the experimental data better than the diprotic representation. Based on surface complexation modeling simulations, the effect of As(V) on As(III) removal was greater than As(III) on As(V) removal. As(III) → (As(V) was observed for the FeAC and the virgin carbon beginning at pH = 8.  相似文献   

16.
A CaO/Fe3O4 nanocomposite was modified by sodium dodecyl sulfate (SDS) and used for Cr(III) removal from aqueous solution. The physical and surface characteristics of the adsorbent were studied by different analysis techniques. The effects of key parameters such as pH, contact time, temperature, initial concentration of Cr(III) ions, and adsorbent dose were investigated at a fixed mixing rate. Parameters were optimized to attain the best possible removal efficiency of Cr(III) ions. The maximum adsorption capacities obtained from the Langmuir model were determined. The results of equilibrium and kinetic studies indicate that the adsorption process follows the Langmuir isotherm model and the pseudo‐second‐order kinetic model. The thermodynamic study demonstrated that the adsorption process was suitable, spontaneous, and exothermic.  相似文献   

17.
18.
This study presents information obtained by the synthesis of Fe(3) oxide/hydroxide nanoparticles sol (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbents for boron removal from solutions. The research describes an adsorption method for cleaning a solution containing boron contaminants followed by recovery of the adsorbent and the adsorbed material for safe removal or further reuse. The technology provides an efficient method of boron removal from water. A marked effect of NanoFe and NanoFe-impregnated GAC adsorbents concentration and pH level on boron removal efficiency was demonstrated. At least 95–98% boron recovery efficiency is possible using NanoFe sol and Fe-impregnated GAC that in fact also recover the adsorbent for reuse. Boron adsorption onto the NanoFe-impregnated GAC adsorbent may be described by pseudo-second-order reaction kinetics and the Langmuir isotherm model. The boron adsorption capacity on iron (3) oxide nanoparticles and Fe-impregnated GAC at an equilibrium concentration of 0.3 mg/dm3 as B in the solution is much higher than these values for similar adsorbents reported in the literature.  相似文献   

19.
In this work, we used deep eutectic solvent (DES) composed of decanoic acid and lidocaine, which is characterized as a green solvent, for separation of Fe (III), which is the most-used metal in the world, and Mn (II), which is currently being used in many industries. We found that the pH of the initial metal solution strongly influenced the extraction mechanism. Fe (III) can be extracted at pH 1.0–2.0 due to the ion pair reaction between Fe3+ and decanoic anion, while at higher pH, the extraction mechanism cannot be evaluated due to formation of precipitation at the aqueous phase. In the case of Mn (II), the ion pair reaction occurred at pH of lower than 2.2 and higher than 3.5, while from pH 2.2 to 3.5, the cation exchange between Mn2+ and lidocaine cation probably dominated the extraction process. The DES concentration needed to reach the complete separation of Fe (III) was about 25 g/L, while Mn (II) was completely extracted using about 300 g/L of DES. The selectivity of this method was very high when was applied in the separation of Fe (III) from Mn (II).  相似文献   

20.
The present work has focused on the removal of arsenic (III) using two effective adsorbents such as red mud treated with HCl and coated with Fe2O3. Adsorption of As (III) was performed by the function of pH, adsorbent dose, contact time, initial ion concentration, and the appropriate conditions for adsorption were determined. The characterization studies of the adsorbent were analyzed using X-ray diffraction, X-ray fluorescence, Brauner–Emmett–Teller, scanning electron microscope, and FTIR spectroscopy. The result of the studies shows that the adsorbent is suitable for the effective removal of As (III) ions. Batch adsorption process showed that the maximum adsorption occurred at Fe2O3-coated red mud. The equilibrium data were well fitted to the nonlinear Langmuir isotherm model and the maximum adsorption capacity (qm) of Fe2O3-coated red mud was found to be 21.85?mg?g?1 which indicates that Fe2O3-coated red mud had more adsorption capacity. In the Freundlich isotherm, the experimentally obtained n value of Fe2O3-coated red mud was 2.393 which indicates the favorable adsorption of As (III) on the adsorbent. Dubinin–Radushkevich isotherm confirms that the adsorption process is physical in nature. Furthermore, the adsorption kinetic studies followed the pseudo-first-order model. All the results concluded that Fe2O3-coated red mud can be considered as a cost-effective and potential adsorbent for As (III) removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号