共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Industrial and Engineering Chemistry》2014,20(5):2801-2805
This study was aimed to evaluate the use of ozone (O3) alone and peroxone (a combination of ozone and hydrogen peroxide; O3/H2O2) as post-treatment processes for color removal in swine wastewater from a membrane filtration system. Results showed that the application of ozone-alone process or the peroxone process could reduce both capital and operating costs compared to reverse osmosis (RO) treatment. Of the two oxidation processes, the ozone-alone process was the most effective for treating nanofiltration (NF)-filtered wastewater, while the peroxone process was the most effective for treating ultrafiltration (UF)-filtered wastewater. 相似文献
2.
Laszlo Erdei Nathaporn Arecrachakul Saravanamuthu Vigneswaran 《Separation and Purification Technology》2008,62(2):382-388
Photocatalysis with titanium dioxide semiconductor catalyst can effectively degrade recalcitrant organic pollutants present in biologically treated sewage effluents. Focusing on process efficiency and sustainability within a broader program, this study presents results obtained with a bench-scale hybrid treatment system. The process train comprised of a slurry (suspension) type continuous photocatalytic (CP) system and an immersed hollow fibre membrane micro-ultrafilter (MF/UF) unit. The CP reactor charged with 1 g/L P-25 catalyst removed 63% dissolved organic carbon (DOC) from a synthetic wastewater (representing biologically treated sewage effluent). The addition of 0.05 g/L of powdered activated carbon (PAC) increased DOC removal up to 76%. The start-up times to achieve 60% DOC removal were 31 min and 15 min, respectively. These results show a 16 times improvement in volumetric load over a comparable batch reactor system used in previous studies by our group.Slurry type photocatalytic reactors need subsequent particle separation to retain the catalyst in the system and allow the discharge of treated effluent. The immersed membrane module accomplished this without prior slurry settling step. Membrane feed pre-treatment with pH adjustment and particle charge neutralisation with aluminium chloride coagulant led to improved critical membrane fluxes, 15.25 L/m2 h and 19.05 L/m2 h, respectively. In each experiment MF/UF produced near zero turbidity permeate, completely retained the photocatalyst, and flocculation also improved the efficiency of DOC removal. Membrane fouling was controlled by particle aggregation rather than feed DOC levels, but the latter had significant impact on coagulant demand. The complete treatment train achieved up to 92% DOC reduction with 12 mg/L AlCl3 dosage using in-line coagulation conditions. The results show that in-line coagulation offers a simple yet effective means to improve the performance of slurry type photocatalytic–MF/UF hybrid systems for advanced water and wastewater treatment applications. 相似文献
3.
甲基多巴是一种降压药物,其生产废水具有高色度、高有机物浓度和生物难降解的特性.采用Fenton氧化-PAM絮凝-A/O生化工艺处理该废水.Fenton氧化处理的优化条件为:pH 5.0,n(Fe2 )∶n(H2O2)=1∶4,H2O2和绿矾投加质量浓度分别为5.0 g/L和10.2 g/U,反应时间2.0 h.PAM絮凝处理的优化条件为:pH 7.0,投加量16.7mg/L.经过Fenton氧化-PAM絮凝处理,CODCr去除率达到74%,脱色率达95%,B/C由0.17升到0.38,废水的可生化性明显提高.后续采用A/O工艺进一步处理,可再去除70%~80%的CODCr. 相似文献
4.
Arif Hussain Haiyang Yan Noor Ul Afsar Chenxiao Jiang Yaoming Wang Tongwen Xu 《Frontiers of Chemical Science and Engineering》2022,16(5):764
Bipolar membrane electrodialysis (BMED) is considered a state-of-the-art technology for the conversion of salts into acids and bases. However, the low concentration of base generated from a traditional BMED process may limit the viability of this technology for a large-scale application. Herein, we report an especially designed multistage-batch (two/three-stage-batch) BMED process to increase the base concentration by adjusting different volume ratios in the acid (Vacid), base (Vbase), and salt compartments (Vsalt). The findings indicated that performance of the two-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:5 was superior in comparison to the three-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:2. Besides, the base concentration could be further increased by exchanging the acid produced in the acid compartment with fresh water in the second stage-batch process. With the two-stage-batch BMED, the maximum concentration of the base can be obtained up to 3.40 mol∙L–1, which was higher than the most reported base production by BMED. The low energy consumption and high current efficiency further authenticate that the designed process is reliable, cost-effective, and more productive to convert saline water into valuable industrial commodities. 相似文献
5.
IC反应器处理马铃薯淀粉生产废水的试验研究 总被引:4,自引:3,他引:4
试验采用超滤-IC反应器-MBR工艺处理马铃薯淀粉生产废水,重点研究了IC反应器处理马铃薯淀粉废水的工艺参数。结果表明,在常温下,当进水COD的质量浓度为6000~9000mg/L、HRT为5h、容积负荷为23.62kg[COD]/(m3·d)时,IC反应器对COD的去除率为91.43%。采用该工艺处理马铃薯淀粉生产废水完全可以达到废水回用的目的。 相似文献
6.
7.
8.
针对维生素B1制药废水有机物浓度高、悬浮物高、色度深、难降解的特点,采用混凝-氧化-铁炭微电解工艺进行处理。试验对混凝剂的种类与用量、pH值、微电解的运行方式及炭铁体积比等进行了优化,最佳工况为:氯化铁用量为150 mg/L,次氯酸钠用量为40 mL/L,炭铁体积比为1∶1.5,曝气加搅拌的微电解方式运行40 min。在进水COD、SS的质量浓度分别为1 500、2 650 mg/L,色度为80倍时,经该工艺处理后,出水COD的质量浓度为164 mg/L,去除率为89.1%,悬浮物和色度去除率分别为97.6%、98%,达到《污水综合排放标准》(GB8978-1996)二级标准。 相似文献
9.
采用双极膜电渗析(bipolar membrane electrodialysis,BMED)将麦草畏生产废水中的NaCl转化为HCl和NaOH回用于农药生产,实现农药废水的资源化利用。首先进行了BMED法处理单组分NaCl溶液体系的110 min间歇运行实验来探索最优操作条件,结果表明,当NaCl初始浓度为160 g/L,电流密度为70 mA/cm2,初始酸碱室浓度为0.075 mol/L时,产物HCl、NaOH的浓度能分别达到1.98 mol/L和 2.06 mol/L,且此时的电流效率较高,达到42.74%。然后考虑实际废水的COD指标主要是甲醇造成的,所以用含不同浓度甲醇的NaCl溶液模拟实际农药废水,实验结束后在酸、碱隔室中检测到少量的甲醇,表明其在BMED运行过程中存在一定程度的渗透,但未对膜堆性能造成明显影响。最后用BMED处理经过预处理后含有机物的麦草畏生产废水,发现在操作时间内膜堆性能与处理高浓度单组分NaCl溶液情况类似,证实BMED法处理麦草畏生产废水并实现资源化利用的可行性。 相似文献
10.
膜生物反应器处理己内酰胺生产废水 总被引:2,自引:1,他引:2
为了更加有效地提高己内酰胺生产废水生化处理装置抗高浓度废水冲击能力,在原A/O处理系统中采用膜生物反应器技术对己内酰胺生产废水进行生化处理。工业应用结果表明:由于己内酰胺废水中氨氮含量较高,膜生物反应器进水pH值应该控制在8.5~9.5,以保证系统有效的硝化反应,去除氨氮;当进水COD、氨氮的质量浓度分别控制在2 000、200 mg/L以内时,出水COD、氨氮的质量浓度分别小于70、15 mg/L。处理后的水质能够达到国家一级排放标准。 相似文献
11.
Performances of RO and NF processes for wastewater reuse: Tertiary treatment after a conventional activated sludge or a membrane bioreactor 总被引:1,自引:0,他引:1
Wastewater reclamation requires processes and technologies having the ability to reduce the presence of micropollutants which are not wholly treated in conventional WWTP. Due to the complexity of membrane-solute interactions and the diversity of secondary treatment effluent (STE) matrices, deeper investigations are required to identify the major foulant species and more specifically their behaviour at high concentration in real waters. This study investigates the rejection and fouling potential of nanofiltration (NF) and low-pressure reverse osmosis (RO) membranes with two STEs sampled from i) a conventional activated sludge process coupled with ultrafiltration (CAS-UF) and from ii) a membrane bioreactor MBR (AquaRM®, SAUR (France)). Whatever the origin of the effluent, RO seems to be the best solution to prevent pollution of tertiary effluents (expected result) but also to obtain low fouling levels. The different composition and molecular weight distribution of MBR and CAS-UF effluents can explain the different fouling behaviours that were observed. 相似文献
12.
13.
Magnetic ion exchange (MIEX®) resin can effectively remove significant amounts of organic matter from biologically treated sewage effluent. The MIEX® process has mainly been used as a batch process, which requires a large area for accommodating both contact tank and settling tank in the treatment process. In this study, a fluidized bed MIEX® reactor (a semi-continuous process) was used as a pre-treatment for a submerged membrane. When used as a pre-treatment for a submerged membrane, the fluidized bed MIEX® contactor could remove a significant amount of organic matter in the wastewater (80% removal). This pre-treatment helped to reduce membrane fouling and keep transmembrane pressure low during the membrane operation of 8 h (less than 19 kPa). The regeneration of MIEX® resin (number of regeneration, regeneration time, etc.) did not have any adverse effect on the organic removal by MIEX®. 相似文献
14.
15.
16.
Wastewater containing copper and cadmium can be produced by several industries. The application of both reverse osmosis (RO) and nanofiltration (NF) technologies for the treatment of wastewater containing copper and cadmium ions to reduce fresh water consumption and environmental degradation was investigated. Synthetic wastewater samples containing Cu2+ and Cd2+ ions at various concentrations were prepared and subjected to treatment by RO and NF in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98% and 99% for copper and cadmium, respectively). NF, however, was capable of removing more than 90% of the copper ions existing in the feed water. The effectiveness of RO and NF membranes in treating wastewater containing more than one heavy metal was also investigated. The results showed that the RO membrane was capable of treating wastewater with an initial concentration of 500 ppm and reducing the ion concentration to about 3 ppm (99.4% removal), while the average removal efficiency of NF was 97%. The low level of the heavy metals concentration in the permeate implies that water with good quality could be reclaimed for further reuse. 相似文献
17.
磷酸铁生产废水因含大量低浓度铵根、硫酸根等杂质离子,增加了工业处理难度,影响了磷酸铁生产企业的可持续性发展。采用膜分离技术对湖南某电池级磷酸铁生产企业的工业废水进行了处理效果试验研究,选用国内某海水淡化膜,在废水进水质量分数为0.519%、pH为7、温度为20℃、操作压力为1.727MPa,并控制产水率为75%的条件下,处理后淡水中铵根离子浓度降为61.22mg/kg、硫酸根离子浓度降为147.63mg/kg、盐浓度降为0.02%,盐脱除率达到96.15%。 相似文献
18.
19.
20.
One-step cleaning method for flux recovery of an ultrafiltration membrane fouled by banknote printing works wastewater 总被引:5,自引:0,他引:5
A method was developed to clean ultrafiltration (UF) membranes fouled by banknote printing works wastewater.The cleaning agent was comprised of 0.7 wt.% NaOH, 0.8 wt.% Na2EDTA, 0.3 wt.% Turkey red oil and 98.2 wt.% de-ionized water. Membrane flux recovered adequately when the cleaning agent was circulated for 20–30 min at 1.5 m/s and 50–60°C. The membrane surfaces before and after cleaning were characterized by SEM/EDX. The spent cleaning agent was analyzed by TOC and ICP. The results showed foulants were removed from the fouled membrane by the cleaning. Pilot-scale experiments were also conducted to validate the efficiency of the cleaning method. This one-step cleaning method replaced an existing four-step cleaning method and was employed to clean OF units in banknote printing works wastewater plants. 相似文献