首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《湿法冶金》2009,28(2)
M.Volpe,等研究了一种环境友好湿法工艺以取代现行的回收铅~酸电池的火法工艺。用不同类型的金属铁(钉子,刨花或粉末)作还原剂,从工业铅泥的醋酸尿素溶液(200~500g/L)中胶结回收金属铅。在试验条件下,99.7%的铅酸电池膏,主要组成为PbSO4,PbO2和PbO·PbSO4,被转化成金属铅。金属铅的转化率和胶结反应速率取决于用作还原剂的铁物质的类型,最佳物质为粉末铁。  相似文献   

2.
研究了采用空气氧化、氢氧化钠浸出、硝酸酸化工艺从废钼催化剂中回收 Mo、Co、Ni等有价金属。试验结果表明:在空气流量30 L/min、氢氧化钠加入量为金属Mo理论耗量1倍、浸出温度85℃条件下,钼浸出率达99.8%;碱浸渣用硝酸酸化、双氧水除铁,双氧水加入量为铁理论量的2~3倍,反应温度70℃;滤液用NaO H溶液调p H为9.5,镍、钴以氢氧化物形式沉淀,酸溶后,用P507萃取剂萃取分离钴、镍。该工艺采用空气氧化,避免了传统焙烧工艺MoO3的挥发损失;用NaOH浸出Mo ,生产成本降低,工艺流程简单,金属回收率较高。  相似文献   

3.
废旧三元锂离子电池经过放电、焙烧、破碎、筛分等预处理方法分离出电池活性物质、集流体与钢壳,再采用H2SO4-Na2SO3对废电池粉料(活性物质)进行浸出,浸出液调节pH至4.5,过滤以除去铁和铝,滤液再调pH至11左右,将锂和镍钴锰分离,得到的锂液经过浓缩后加入Na2CO3得到工业级的LiCO3,在镍钴锰富集物中加入氨水将锰和镍钴分离,最后使用P507分离镍和钴,在相比O/A=1,平衡pH=4.5,有机相组成为25% P507 75%溶剂油,经二级逆流萃取后钴的萃取率为99.3%。使用200 g/L硫酸为反萃剂,相比为5时,钴的回收率达99.21%。反萃液使用草酸铵沉钴,萃余液中的镍采用氢氧化钠沉淀,整个工艺流程中钴的回收率为91.82%,镍的回收率为91.12%。  相似文献   

4.
以废旧的镍钴锰酸锂电池为原料,经过活性物质的分离、浸出、逐步化学沉淀等工序,有效回收了废旧锂离子电池中的有价值金属。采用H_2SO_4和还原剂(NH_4)_2SO_3对镍钴锰酸锂进行浸出试验,在最佳浸出条件下:H_2SO_4 1.0mol/L、(NH_4)_2SO_3 0.34mol/L、固液比25g/L、反应温度60℃、反应时间40min,Co、Ni、Mn、Li的浸出效率分别为97.61%、98.40%、97.91%和98.43%。然后采用共沉淀法回收浸出液中的镍、钴、锰,最后,通过添加饱和的Na_2CO_3回收母液中的Li+。  相似文献   

5.
张丽霞 《湿法冶金》2006,25(1):32-32
A.Mellah,等研究了用7-(4-乙基-1-甲基辛基)-8-羟基喹啉-Kelex 100作萃取剂,用处理过的煤油作稀释剂,从5.5mol/L的磷酸溶液(30% P2O5)中溶荆萃取锌、镉和铬。在有机相与水相的体积比为1:1、室温条件下,萃取240min,可回收58%的锌、34%的铬和15%的镉。为了改善萃取动力学,在有机相中添加改性剂。在金属回收率为60%条件下,添加n-正癸醇(体积分数10%)可将平衡时阃从240min降低到30min,提高了金属萃取速率。金属离子的萃取率随水相pH的升高而升高。根据0.1mol/L Kelex 100溶液pH0.5值的差异可以分离锌、铬和镉。提高Kelex 100的浓度,金属离子的萃取率升高。在Kelex 100浓度为0.4mol/L时,锌、铬和镉的负载能力分别为83%,80%和71%,说明该萃取剂对这几种金属离子有较高的选择性。  相似文献   

6.
用草酸溶液从负载钕的P507中直接反萃取沉淀钕   总被引:1,自引:0,他引:1  
介绍了在自制的三相反萃取槽中用草酸溶液从负载钕的P507有机相中直接反萃取沉淀钕的半工业试验结果。试验结果表明,用0.3~0.5mol/L的草酸溶液从含钕0.0533和0.11135mol/L的有机相中直接反萃取沉淀钕,控制沉淀母液中草酸浓度0.2mol/L,返回使用80%的沉淀母液,在接触时间10~40min范围内,获得的Nd2O3的纯度≥99.88%。产品粒度D50在3.76~4.27μm之间,氯质量分数0.01%,非稀土杂质的质量分数符合99.9%Nd2O3产品质量要求。  相似文献   

7.
从钴白合金的酸性浸出液中选择性萃取铁   总被引:1,自引:0,他引:1  
研究了用TBP作萃取剂,从含铁、铜、钴的酸性浸出液中萃取铁。试验结果表明,当有机相中TBP体积分数为70%,接触时间3 min,VO/VA=2/1,料液中[H ]为1.5 mol/L,[Cl-]为190 g/L时,铁的萃取效果最佳,其萃取率大于99.6%,铁与铜、钴的分离系数分别在3×103与4.5×103以上,而且有机相中无萃取污物产生。反萃取试验结果表明,用纯净水反萃取铁,在VO/VA=5/1条件下,经过5级反萃取,铁的反萃取率可达到98.8%。  相似文献   

8.
设计了综合回收氢镍电池负极材料中稀土元素并同时回收镍、钴的湿法冶金流程.该流程回收的主要步骤包括:硫酸浸出负极,使大部分稀土以硫酸稀土的形式与镍、钴分离,硫酸稀土经碱转化为氢氧化稀土;进入浸出液的稀土,用P507+煤油萃取使其与镍、钴分离,并同时将锌、锰等杂质与镍、钴分离;用HCl反萃稀土,反萃液与氢氧化稀土中和得到氯化稀土.稀土的综合回收率为98.4%,镍、钴的综合回收率为98.5%.  相似文献   

9.
织金磷矿酸浸液萃取分离稀土试验研究   总被引:1,自引:0,他引:1  
研究了用溶剂萃取法从织金磷矿酸浸液中分离稀土,考察了各因素对稀土萃取率和反萃取率的影响,确定了适宜的萃取条件。结果表明:用P204作萃取剂,控制相比为3∶1、P204浓度为1.5 mol/L、初始水相P2O5质量浓度为101.20g/L、在室温下萃取15min,稀土萃取率为89.62%;在相比1∶8、6mol/L盐酸为反萃取剂、室温下反萃取10min条件下,稀土反萃取率为87.86%。  相似文献   

10.
研究了用异丙醚和TBP从碲铋矿盐酸浸出液中以分步萃取法分离铁与碲。用异丙醚萃取分离铁,萃取条件为溶液酸度7.2mol/L,Va/Vo=3/4,萃取时间1.5min;用蒸馏水反萃取,反萃取时间1.0min,反萃取相比Va/Vo=1/1。铁萃取率为99.92%,碲萃取率仅1.60%,铁与碲分离效果很好。萃余液中的碲用30%TBP-煤油溶液萃取,萃取条件为酸度6mol/L,萃取相比Va/Vo=1/2,萃取时间2min;用蒸馏水反萃取,反萃取相比Va/Vo=1/1,反萃取时间10min,1次2级萃取碲,1次4级反萃取碲,碲反萃取率接近100%。  相似文献   

11.
Basudev Swain等研究了用Na—Cyanex272作萃取剂从混合硫酸盐溶液中溶剂萃取钴和锂,研究了不同参数,如料液pH,萃取剂浓度,料液中钴、锂离子浓度的影响,以及不同无机酸,如H2SO4,HCl,HNO3的反萃取行为。用0.03moL/L Na—Cyanex272,在平衡pH为6.90,混合溶液中硫酸钴和硫酸锂的浓度为0.01mol/L条件下萃取钴和锂的最大分离系数为62。在此条件下,钴的萃取率约84%,约8%的锂被共萃取。  相似文献   

12.
研究了采用一种新型萃取剂A从电解锰阳极液中通过溶剂萃取获得制备电池级硫酸锰的高纯溶液,考察了振荡时间、水相pH、萃取剂浓度、有机相皂化率、相比Vo/Va、硫酸铵浓度对萃取的影响,以及相比Vo/Va和酸度对反萃取的影响.结果表明:在Vo/Va=1.5/1、萃取剂体积分数30%、有机相皂化率30%、水相pH=4.6、25℃条件下萃取15 min,锰萃取率为77.9%,镁萃取率为13.7%;用1 mol/L硫酸溶液,在相比V o/V a=6/1条件下反萃取负载有机相,得到平均锰质量浓度53 g/L、酸度较低的反萃取液;用此反萃取液制得的硫酸锰产品中锰质量分数大于32%,镁质量分数低于1.5×10-5,符合化工行业《电池用硫酸锰》一等品要求.  相似文献   

13.
研究了用硫酸从碳性锌锰电池正极材料中浸出Zn、Mn.条件试验结果表明:在浸出时间1h、硫酸浓度0.4 mol/L、固液质量体积比1∶50、H2O2体积分数0.2%、温度80℃条件下,Zn浸出率为98%,Mn浸出率为39%.正交试验结果表明在硫酸浓度0.4 mol/L、固液质量体积比1∶10、H2O2体积分数0.3%、温度80℃条件下,Zn浸出率达99.9%,Mn浸出率为33%.  相似文献   

14.
A .L .Smirnova等研究了在20~50℃、有机相和水相体积比为1、加或不加 N H4 O H 条件下,用H2 O2溶液从溶解在无味煤油中30%的磷酸三丁酯(TBP)中反萃取铀。反萃取过程中,铀以过氧化铀形式被选择性沉淀。铀的反萃取率随H2 O2含量增大、温度升高和N H3浓度从0升至15 g/L而升高。用含4 mol H2 O2/mol U和N H312 g/L的热溶液(40℃),从TBP中反萃取铀,99.7%的铀以过氧化铀形式被反萃取。反萃取得到的过氧化铀纯度高,以两种水合形式存在:U O4·4 H2 O (92%)和 U O4·2 H2 O ,平均粒径为20.75μm。用红外光谱法研究了过氧化氢对有机相的影响。经过30次萃取/反萃取后,未观察到TBP结构发生变化。试验表明,过氧化氢的应用不受限制。  相似文献   

15.
采用溶剂萃取—化学沉淀法从废锂离子电池正极材料中回收硫酸钴、氢氧化镍和氟化锂,比较了萃取剂P507和Cyanex272对钴、镍的萃取分离性能。试验结果表明:1-1-1型废锂离子电池正极材料浸出液经P204除锰后,用0.5 mol/L P507或0.6 mol/L Cyanex272经两级错流萃取钴,钴萃取率分别为98.21%和99.44%,镍共萃取率分别为24.42%和4.26%,锂共萃取率分别为15.84%和5.11%,Cyanex272对钴镍的萃取分离性能明显优于P507;P507和Cyanex272负载有机相分别用CoSO_4溶液和HAc-NaAc溶液洗脱共萃取的镍和锂,然后用硫酸反萃取钴,反萃取液中Co/Ni质量比分别为3 217(P507)和12 643(Cyanex272),蒸发结晶可得高纯硫酸钴;萃余液中的镍、锂分别用NaOH和HF沉淀,可得氢氧化镍和氟化锂固体。采用此方法,废锂离子电池正极材料中的钴、镍、锂都得到有效回收。  相似文献   

16.
研究了用季胺盐协同体系(P507+N263)从溶液中萃取镧。结果表明:2种萃取剂混合后对镧有正协同萃取作用,最大协同系数达3.25;在V(P507)/V(N263)=1/1、料液pH=3.5、V_o/V_a=3/4、振荡时间7 min条件下,镧萃取分配比为0.94;在稀土浓度0.52 mol/L、振荡时间7 min、V_o/V_a=1/1条件下,镧铈分离系数达14.8;负载有机相用5 mol/L盐酸反萃取,镧可完全被转入溶液;混合萃取剂的协同萃取能力优于2种萃取剂单独使用时的萃取能力。  相似文献   

17.
采用石墨炉原子吸收法,用APDC—DDTC—MIBK萃取分离镍,对金属硅中的痕量镍进行了分析。讨论并确定了方法的最佳测定条件,结果表明,镍的检出限为1.2ng/mL,回收率为97.1%~101.2%,相对标准偏差为0.9%~1.7%。该法准确、快速、简便,应用于金属硅中痕量镍的测定,结果满意。  相似文献   

18.
硒的化合物SeOCl2在约10mol/L HCl中能被C6H6萃取而快速地与许多共存元素分离,然后在NA2SO3—NH4OH底液中示波极谱法测定,测定范围:0.00010%~0.20%硒,结果良好。  相似文献   

19.
1、前言世界各国在上世纪70年代以前普遍研制和应用的是Ni/H2电池,70年代中期研制出了镍金属氢化物作负极的电池,之后研制出了LaNi5作负极的电池,80年代中期以后研制出了混合稀土金属作负极的电池。上述电池系列都是根据Ni/H2电池的工作原理发展起来的。目前把这些系列电池统称为镍金属氢化物电池,即Ni/M H电池。日本已经成为世界上储氢材料M H负极及其电池生产的主要国家,比如东芝电池公司、三洋电机公司以及日本重化学工业公司等大公司都致力于稀土储氢电池的开发和生产;其次中国众多公司也在开发稀土储氢电池;美国的奥芬尼克公司、…  相似文献   

20.
金属在其合金相中扩散系数的测定   总被引:2,自引:0,他引:2  
本文提出一种测定金属在其合金相中扩散系数的方法。推出在电位阶跃条件下电流达到稳态时形成合金所需的电量与扩散系数的关系式。在含稀土氯化物熔体中,用铜电极、铁电极、镍电极分别测定了镧在LaCu_2与LaCu_5、钇在YCu_4、钕在NdFe_2、镨在PrNi_5中的扩散系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号