共查询到17条相似文献,搜索用时 78 毫秒
1.
一种文本分类的在线SVM学习算法 总被引:5,自引:4,他引:5
本文提出了一种用于文本分类的RBF 支持向量机在线学习算法。利用RBF 核函数的局部性,该算法仅对新训练样本的某一大小邻域内且位于“可能带”中的训练样本集进行重新训练,以实现对现有SVM的更新。为高效的实现该邻域大小的自适应确定,使用ξa 泛化错误估计在所有现有训练样本集上对当前SVM的泛化错误进行定性估计。同时引入泛化能力进化因子,使得结果SVM在分类效果上具有自动调整能力,并防止分类能力的退化。在TREC - 5 真实语料上的对比测试结果表明,该算法显著地加速了增量学习的过程而同时保证结果SVM的分类效果。 相似文献
2.
基于规则的自动分类在文本分类中的应用 总被引:8,自引:3,他引:8
文本自动分类是指将文本按一定的策略归于一个或多个类别中的应用技术。本文首先介绍三种基于统计的自动分类技术(k近邻分类器、支持向量机分类器和朴素贝叶斯分类器),剖析了基于统计的自动分类的优势及不足。基于统计的自动分类的不足主要表现为:当类别之间分类特征的交叉变大时,分类精度呈下降趋势,在多层分类的情况下,此局限尤为突出。针对此局限性,为了提高自动分类的精度,我们引入了基于规则的自动分类来对其进行改进和扩充,并整合两种自动分类技术的优点,设计出了混合分类器系统,从而获得了比较理想的分类效果。 相似文献
3.
基于关键短语的文本分类研究 总被引:1,自引:0,他引:1
文本分类的进一步改进除了算法方面,应该还立足于影响文本分类最底层、最根本的因素: 文本表示中的特征项,提高特征项的完整独立程度。关键短语是具有强文本表示功能的特征短语,在表示文本时,能将文本的内容特征(如主题类别)鲜明地表示出来。关键短语具有结构稳定、语义完整和较强统计意义的特点,能克服向量空间模型和贝叶斯假设的缺点,更适合作为文本表示的特征,有利于提高文本分类的效果。本文从语言学、认知心理学和言语习得、计算语言学等方面寻求关键短语优势的理论依据,对关键短语进行了界定,通过抽取网页上专家标引的关键词获得关键短语。在约3万篇测试集上(共15个大类,244个小类),与以词为特征的文本分类相比,以关键短语为特征的文本分类的大类微平均提高了3.1%,小类微平均提高了15%。 相似文献
4.
基于监督学习的中文情感分类技术比较研究 总被引:6,自引:0,他引:6
情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,其中各种有监督学习方法的分类效果以及文本特征表示方法和特征选择机制等因素对分类性能的影响更是亟待研究的问题。本文以n-gram以及名词、动词、形容词、副词作为不同的文本表示特征,以互信息、信息增益、CHI统计量和文档频率作为不同的特征选择方法,以中心向量法、KNN、Winnow、Nave Bayes和SVM作为不同的文本分类方法,在不同的特征数量和不同规模的训练集情况下,分别进行了中文情感分类实验,并对实验结果进行了比较,对比结果表明: 采用BiGrams特征表示方法、信息增益特征选择方法和SVM分类方法,在足够大训练集和选择适当数量特征的情况下,情感分类能取得较好的效果。 相似文献
5.
6.
基于Bootstrapping的文本分类模型 总被引:1,自引:3,他引:1
本文提出一种基于Bootstrapping 的文本分类模型,该模型采用最大熵模型作为分类器,从少量的种子集出发,自动学习更多的文本作为新的种子样本,这样不断学习来提高最大熵分类器的文本分类性能。文中提出一个权重因子来调整新的种子样本在分类器训练过程中的权重。实验结果表明,在相同的手工训练语料的条件下,与传统的文本分类模型相比这种基于Bootstrapping 的文本分类模型具有明显优势,仅使用每类100 篇种子训练集,分类结果的F1 值为70156 % ,比传统模型高出4170 %。该模型通过使用适当的权重因子可以更好改善分类器的训练效果。 相似文献
7.
8.
9.
SVM增量学习算法研究 总被引:1,自引:0,他引:1
SVM是在模式分类中表现优秀的一种分类方法。通过对现有SVM的两种增量算法的分析,给出了改进措施,在此基础上结合类加权思想.提出了一种新的加权增量SVM学习算法。并将其应用于Web文本分类中。 相似文献
10.
该文研究论坛的增量搜集问题。由于在论坛中同一主题通常分布在多个页面上,而传统增量搜集技术的抓取策略通常是基于单个页面,因此这些技术并不适于对论坛增量搜集。该文通过对许多论坛中版块变化规律的统计分析,提出了基于版块的论坛增量搜集策略。该策略将属于同一版块的所有页面看做一个整体,以它做为抓取的基本单位。同时该策略利用版块权重和局部时间规律确定抓取频率和抓取时间点。实验结果表明本策略对新增和新回复帖子的平均召回率为99.3%,并且与平均调度方法相比系统总延迟最高可减小42%。 相似文献
11.
12.
一种基于紧密度的半监督文本分类方法 总被引:2,自引:0,他引:2
自动的文本分类已经成为一个重要的研究课题。在实际的应用情况下,很多训练语料都只有一个数目有限的正例集合,同时语料中的正例和未标注文档在数量上的分布通常也是不均衡的。因此这种文本分类任务有着不同于传统的文本分类任务的特点,传统的文本分类器如果直接应用到这类问题上,也难以取得令人满意的效果。因此,本文提出了一种基于紧密度衡量的方法来解决这一类问题。由于没有标注出来的负例文档,所以,本文先提取出一些可信的负例,然后再根据紧密度衡量对提取出的负例集合进行扩展,进而得到包含正负例的训练集合,从而提高分类器的性能。该方法不需要借助特别的外部知识库来对特征提取,因此能够比较好的应用到各个不同的分类环境中。在TREC’05(国际文本检索会议)的基因项目的文本分类任务语料上的实验表明,该算法在解决半监督文本分类问题中取得了优异的成绩。 相似文献
13.
中文文本体裁的自动分类机制 总被引:1,自引:0,他引:1
文本按体裁自动分类属于按文本的形式分类的范畴,所以它与按内容自动分类问题有许多的不同之处,本文提出了一种关于中文文本体裁自动分类的新机制。在体裁分类过程中首要的问题是分类特征的选取,体裁分类特征项分为两种方式加以描述,一是集合形式,如基于分类词典和语料统计的政论性词汇和情感词汇等,二是规则形式,如公文标识信息和条文句等。基于根据特征之间的关联性和差异性,采用样本分布决策的方法抽取相应的特征项。最后利用支撑向量机算法进行自动分类。该机制已经在五类体裁的语料上得到实现,并获得了较好的效果。 相似文献
14.
生物医学文本挖掘技术的研究与进展 总被引:1,自引:0,他引:1
生物医学研究是二十一世纪最受关注的研究领域之一,该领域发表了巨量的研究论文,已经达到年平均60万篇以上。如何在规模巨大的研究文献中有效地获取相关知识,是该领域研究者所面临的挑战。作为生物信息学分支之一的生物医学文本挖掘技术就是一项高效自动地获取相关知识的新探索,近年来取得了较大进展。这篇综述介绍了生物医学文本挖掘的主要研究方法和成果,即基于机器学习方法的生物医学命名实体识别、缩写词和同义词的识别、命名实体关系抽取,以及相关资源建设、相关评测会议和学术会议等。此外还简要介绍了国内研究现状,最后对该领域近期发展作了展望。 相似文献
15.
在文本分类中,为了降低计算复杂度,常用的特征选取方法(如IG)都假设特征之间条件独立。该假设将引入严重的特征冗余现象。为了降低特征子集的冗余度,本文提出了一种基于最小冗余原则(minimal Redundancy Principle,MRP)的特征选取方法。通过考虑不同特征之间的相关性,选择较小冗余度的特征子集。实验结果显示基于最小冗余原则方法能够改善特征选取的效果,提高文本分类的性能。 相似文献
16.
17.
文本分类作为自然语言处理中一个基本任务,在20世纪50年代就已经对其算法进行了研究,现在单标签文本分类算法已经趋向成熟,但是对于多标签文本分类的研究还有很大的提升空间.介绍了多标签文本分类的基本概念以及基本流程,包括数据集获取、文本预处理、模型训练和预测结果.介绍了多标签文本分类的方法.这些方法主要分为两大类:传统机器... 相似文献