首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
陶永霞  周建中  武运  于小会 《食品科学》2009,30(20):118-121
以枣渣为原料,采用酶法水解淀粉,碱法水解蛋白质、脂肪的提取方法提取枣渣可溶性膳食纤维,探讨加酶量、酶解时间、碱解pH值、碱解时间、碱解温度等因素对膳食纤维得率的影响。通过正交试验确定了酶碱法制备枣渣可溶性膳食纤维的最佳工艺条件为:糖化酶加酶量为0.4%,纤维素酶加酶量为0.5%、酶解时间60min、碱解pH值为12、碱解温度70℃、碱解时间90min,在此条件下枣渣可溶性膳食纤维得率达11.32%,持水力和溶胀性分别达到848.68%和9.26ml/g。  相似文献   

2.
该研究以玉米皮渣为原料,经处理后获得不溶性膳食纤维,采用生物酶法对膳食纤维进行改性处理,主要研究双酶酶解工艺对水溶性膳食纤维得率的影响。结果表明,木聚糖酶和纤维素酶酶解玉米皮渣可显著提高可溶性膳食纤维得率,最佳的酶解条件为纤维素酶添加量为30 mg/g底物、木聚糖酶添加40 mg/g底物、料液比1∶12(g/mL)、酶解时间90 min,在该条件下,水溶性膳食纤维得率为2.996%。  相似文献   

3.
响应面法优化菜籽皮可溶性膳食纤维提取工艺   总被引:1,自引:0,他引:1  
为了探讨酶法和化学法结合提取菜籽皮中可溶性膳食纤维。采用纤维素酶和氢氧化钠提取菜籽皮中的可溶性膳食纤维,研究了酶添加量、酶解时间、碱解pH、碱解时间、碱解温度等因素对膳食纤维得率的影响。在单因素试验的基础上进行响应面试验设计,确定了酶-化学法制备菜籽皮膳食纤维的最佳工艺条件:纤维素酶加酶量为0.4%,酶解时间60 min,碱解pH 13,碱解温度70℃、碱解时间60 min,在此条件下菜籽可溶性膳食纤维得率为7.18%。因此,采用纤维素酶和氢氧化钠相结合的方法提取菜籽皮中的可溶性膳食纤维是切实可行的。  相似文献   

4.
以马铃薯干渣为原料,采用α-淀粉酶和蛋白酶提取膳食纤维后,用纤维素酶对其进行改性,研究酶添加量、p H、酶解温度和酶解时间对马铃薯渣可溶性膳食纤维得率的影响。在此基础上用正交实验优化酶反应的工艺条件。结果表明:酶添加量25 U/g,p H5,酶解温度45℃,酶解2.5 h为最佳反应条件。在此条件下可溶性膳食纤维得率为28.78%,而未用纤维素酶处理的得率为16.18%。通过AOAC 993.19酶-重量法测定马铃薯干渣中可溶性膳食纤维含量由7.01%提高至13.13%。  相似文献   

5.
以马铃薯渣为原料制备膳食纤维,用纤维素酶和木聚糖酶对其进行改性处理,以提高可溶性膳食纤维得率。在单因素实验的基础上选取合适的因素及水平,通过响应面法优化2种酶复合使用的工艺条件,得到的最佳条件为:料液比1:15(g/mL)、纤维素酶添加量0.41%、木聚糖酶添加量0.40%、pH5、酶解温度50℃、酶解时间1.55 h。在此条件下,可溶性膳食纤维得率为23.15%,比原马铃薯渣提高10.7%。  相似文献   

6.
建立纤维素酶辅助苹果梨渣可溶性膳食纤维的最佳提取工艺。以苹果梨渣为原料,首先研究了料液比、酶添加量、酶解时间、酶解温度对得率的影响。在此单因素实验基础上,优化出了纤维素酶辅助提取苹果梨渣可溶性膳食纤维的最佳工艺参数:料液比1∶17(g/m L),酶添加量60U/g,酶解时间7h和酶解温度49℃,此时可溶性膳食纤维的得率为15.31%。然后对所得可溶性膳食纤维持水力、持油力和膨胀力进行研究发现:所得苹果梨渣可溶性膳食纤维持水力4.72g/g、持油力2.39g/g及膨胀力4.46m L/g。  相似文献   

7.
以椪柑渣为试验原料,采用响应面分析法建立酶法提取椪柑渣中可溶性膳食纤维得率的二次多项数学模型,验证了数学模型的有效性,并探讨了酶添加量、酶解温度、p H值和酶解时间对可溶性膳食纤维得率的作用规律,优化提取工艺参数。试验结果表明:加酶量4.0 m L/100 g,酶解温度50.0℃,p H值5.0,酶解时间8 h,该条件下SDF提取率高达32.53%。采用酶法提取椪柑渣中的可溶性膳食纤维是切实可行的。  相似文献   

8.
胡萝卜渣膳食纤维提取工艺及其性能特性研究   总被引:2,自引:0,他引:2  
通过水提醇沉法提取胡萝卜渣水溶性膳食纤维(CRSDF),通过外加淀粉酶和蛋白酶提取胡萝卜渣水不溶性膳食纤维(CRIDF),采用均匀设计优选提取工艺条件;通过测定CRIDF的膨胀性、持水力、结合水力、阳离子交换容量、结合脂肪能力及吸附胆酸钠能力来了解其性能特性.CRSDF提取的最佳工艺参数为时间60 min,液料比40:1(mL/g),pH值1.5,温度80%;提取率为70%.最佳酶解条件,淀粉酶为加酶量0.60%,时间60 min,pH值7.0,温度75℃;中性蛋白酶为加酶量0.30%,时间60 min,pH值7.0,温度70℃.利用胡萝卜渣提取膳食纤维得率较高,理化性能较好,有良好的发展前景.  相似文献   

9.
吴洪斌  杨明  魏婷  吴宏  郑刚 《食品科技》2011,(6):104-107
以番茄皮渣为原料,通过纤维素酶对膳食纤维进行改性,旨在提高可溶性膳食纤维含量。试验证明,酶解温度40.0℃、pH4.0、酶添加量14.0mg/mL、酶解时间4h时为可溶性膳食纤维最佳改性条件,可溶性膳食纤维含量为4.78%。通过对上述各种因素的优化,确定了番茄皮渣总膳食纤维酶法改性条件,为相关生产加工企业提供一定的参考依据和理论支持。  相似文献   

10.
李加兴  刘飞  范芳利  陈双平  秦轶  李伟 《食品科学》2009,30(14):143-148
以猕猴桃皮渣为原料,采用酸水解法从猕猴桃皮渣中提取可溶性膳食纤维。通过单因素试验和响应面分析法,考察料液比、浸提液pH 值、提取温度、提取时间对可溶性膳食纤维提取率的影响,优化提取工艺参数。结果表明,酸水解法提取猕猴桃皮渣可溶性膳食纤维的最佳提取工艺条件为料液比1:37(g/ml)、浸提液pH2.5、提取温度80℃、提取时间100min,在该条件下可溶性膳食纤维的得率为47.74%。  相似文献   

11.
以沙果渣为原料,通过单因素试验和正交试验,研究木瓜蛋白酶酶解法制备高活性沙果渣膳食纤维的最佳工艺条件。结果表明:木瓜蛋白酶用量30000U/g,木瓜蛋白酶作用时间90min,木瓜蛋白酶作用温度40℃,木瓜蛋白酶作用pH值为7.5,此时测得SDF/TDF为13.45%。所得膳食纤维为米黄色,持水力为11.44g/g,持油力为5.36g/g,膨胀力为4.57mL/g,是一种高活性的膳食纤维及理想的食品添加剂。  相似文献   

12.
杨锋  段玉峰 《食品科技》2007,32(5):79-81
以火棘果实为原料,研究了其膳食纤维的制备、性质及在挂面中的应用。结果表明:火棘膳食纤维产品得率约为6.5%,其中总膳食纤维含量为71.3%,水溶性膳食纤维占总膳食纤维的58.7%;其最大膨胀力为5.5mL/g,持水力为4.82g水/g干料;火棘膳食纤维可以降低挂面的弯曲折断率以及蒸煮后的熟断条率和烹调损失,改善面条品质,其最适使用量为3%。  相似文献   

13.
采用纤维素酶、木聚糖酶、纤维素-木聚糖复合酶分别对马铃薯渣膳食纤维进行改性,研究酶法改性对膳食纤维理化性质和单糖组分的影响。单糖测定结果表明,3种酶法改性后膳食纤维中均含有葡萄糖、半乳糖、半乳糖醛酸、阿拉伯糖、木糖5种单糖,但不同酶法改性膳食纤维各单糖含量有显著差异(p<0.05)。理化性质测定结果表明,不同酶法改性后膳食纤维的持水力、结合水力、溶解度强弱次序均为复合酶改性>木聚糖酶改性>纤维素酶改性;持油力和阳离子交换力的强弱次序均为复合酶改性>纤维素酶改性>木聚糖酶改性,复合酶改性后膳食纤维理化性质明显优于其他酶法改性。复合酶改性后膳食纤维持水力、持油力、结合水力、溶解度、阳离子交换力分别为6.29 g/g、2.89 g/g、5.99 g/g、32.28%、0.60 mL/g,与原膳食纤维相比较分别提高了115.22%、16.73%、27.18%、45.27%、173.18%。马铃薯渣膳食纤维改性前后均具有糖类特征官能团,在某些波长处出现相似吸收峰,吸收峰的强度和面积发生了改变。  相似文献   

14.
生物解离大豆残渣中膳食纤维含量丰富,为明晰生物解离提取法对大豆膳食纤维的改性效果,获取高品质大豆膳食纤维,本研究测定生物解离大豆膳食纤维的纯度、理化性质及功能特性,并与水提法天然大豆膳食纤维,化学法、发酵法及挤压膨化法改性大豆膳食纤维进行对比。结果表明:生物解离大豆膳食纤维纯度可达82.58%,其中可溶性膳食纤维含量约占总膳食纤维的60%,属于优质膳食纤维;生物解离膳食纤维的持水性、持油性、膨胀性和溶解性分别为6.87 g/g、5.48 g/g、8.22 mL/g和5.07%,均明显高于其他方式提取的膳食纤维。功能特性测定结果表明,不同方式提取的膳食纤维功能特性强弱次序均为生物解离膳食纤维>挤压膨化法改性膳食纤维>发酵法改性膳食纤维>化学法改性膳食纤维>水提法膳食纤维。生物解离膳食纤维在pH 7.0时对Pb2+、As+、Cu2+ 3 种重金属离子吸附能力分别为351.2、304.1、214.1 μmol/g。此外,生物解离大豆膳食纤维的葡萄糖吸收能力、α-淀粉酶抑制能力和胆汁酸阻滞指数分别为6.56~35.78 mmol/g、18.42%和33.12%~35.52%,均显著高于其余提取方式的膳食纤维。因此,生物解离提取法对大豆膳食纤维改性效果显著,生物解离残渣可作为一种新型的膳食纤维来源进行开发应用。  相似文献   

15.
该研究对雷竹笋渣及其经各种不同的方法处理后得到的膳食纤维的物化特性进行了测定和分析。研究表明,雷竹笋渣采用化学法和发酵法加工制备膳食纤维,成品的性能均有显著的提高(P<0.05);与化学法制备的膳食纤维比较,发酵法制备的膳食纤维除对脂肪的吸附能力较低之外,其他性能如水合性质(持水力、溶胀性、结合水力分别为7.43 g/g、5.57 mL/g、5.26 g/g)、阳离子交换能力0.43 mmol/g、吸附胆固醇的能力5.25 mg/g、NO2-的吸附能力1.45 mg/g均显著优于化学法制备的膳食纤维的水合性质(5.48 g/g、4.30 mL/g、4.54 g/g)、阳离子交换能力0.37 mmol/g、吸附胆固醇的能力2.02 mg/g、NO2-的吸附能力0.80 mg/g。就对膳食纤维的性能的影响而言,发酵法是最佳的制备雷竹笋渣膳食纤维的方法。  相似文献   

16.
以马铃薯为原料,对膳食纤维进行提取制备,考察马铃薯膳食纤维的物化特性,并测定不同马铃薯膳食纤维添加量对马铃薯热干面品质的影响。结果表明,马铃薯膳食纤维中不溶性膳食纤维占48.74%;马铃薯膳食纤维的持水性为11.23?g/g,持油性为1.76?g/g,吸水膨胀性为6.65?mL/g,葡萄糖吸附能力为0.87?mmol/g,胆固醇吸附能力为2.04?mg/g;膳食纤维在一定程度上改善了马铃薯热干面的品质:随着膳食纤维添加量的增加,热干面的吸水率、蒸煮损失率呈不规律变化趋势;其剪切力及拉伸力整体上呈逐渐减小的变化趋势;膳食纤维能延缓面条中淀粉的分解,且增加面条中蛋白质的消化率。综上所述,膳食纤维的建议添加量为5%~12%。  相似文献   

17.
为了改善江蓠残渣膳食纤维的性能,采用纤维素酶和木聚糖酶对漂白后的江蓠残渣膳食纤维进行功能活化研究,筛选出了较佳的复合酶活化配方;采用扫描电镜研究了活化前后膳食纤维的表面结构。研究结果表明:45u/g纤维素酶和60u/g木聚糖酶复合酶处理膳食纤维可以使膳食纤维的可溶性膳食纤维含量(SDF)、持油能力(OBC)、膨胀力(SW)和持水力(WHC)分别增加29%、26%、15%和14%,活化后的江蓠残渣膳食纤维的膨胀力和持水力分别达到4.71mL/g和648%,功能性指标超过西方国家麸皮膳食纤维的标准(膨胀力4mL/g、持水力400%);通过扫描电镜观察发现,复合酶改性后的膳食纤维的表面结构变得蓬松,有孔隙结构出现,可能是其物理性能变好的原因。  相似文献   

18.
本文采用酶法对金柚中总膳食纤维、水溶性膳食纤维、水不溶性膳食纤维分别进行提取,并对其结构、理化性质以及肠道功能进行评价。结果表明:金柚柚皮中总膳食纤维含量为65.72%,其中可溶性、水不溶性膳食纤维的得率分别为15.13%%和43.21%;总膳食纤维结构为多孔珊瑚状,水溶性膳食纤维表面有多处孔洞,水不溶性膳食纤维结构较平整;三者均含有丰富的葡萄糖、阿拉伯糖、木糖;水不溶性膳食纤维的持水力和膨胀力较好,分别为6.68 g/g和27.61 g/g;在2.5 mg/mL和10 mg/mL的体系中,水溶性膳食纤维抑制葡萄糖扩散效果更好,为0.11mg/(mL·h);水不溶性膳食纤维对α-淀粉酶抑制效果最好,此时α-淀粉酶活性为93.90%;水溶性纤维破坏胆固醇能力最强,分别为7.20%和9.40%。同时,水溶性膳食纤维具有更优越的DPPH·清除能力和铁离子还原能力。通过酶解法制得的柚皮膳食纤维有较好的理化性质,可以作为优良的食品添加剂在食品中应用。  相似文献   

19.
以雷竹笋渣为原料,以1∶1比例混合的保加利亚乳杆菌和嗜热链球菌作为发酵菌种,以液料比、发酵温度、发酵时间、菌种接种量对膳食纤维得率的影响为评价指标,通过单因素试验和正交试验优化发酵法制备雷竹笋渣膳食纤维的工艺条件。结果表明,发酵法制备雷竹笋渣膳食纤维的最佳工艺为:接种量为4%,发酵温度为40 ℃,发酵时间为24 h,液料比为10.0∶1(mL∶g),在此条件下制备的膳食纤维得率为(80.20±0.60)%,其持水力、溶胀性、结合水力以及阳离子交换能力分别为7.68 g/g、5.53 mL/g、5.47 g/g、0.39 mmol/g。雷竹笋渣经发酵后,膳食纤维的纯度和物化性质均得到一定的提高,表明发酵法是一种可行的膳食纤维制备方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号