首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

3.
In human cells the association of MHC class I molecules with TAP is thought to be mediated by a third protein termed tapasin. We now show that tapasin is present in murine TAP-class I complexes as well. Furthermore, we demonstrate that a mutant H-2Dd molecule that does not interact with TAP due to a Glu to Lys mutation at residue 222 of the H chain (Dd(E222K)) also fails to bind to tapasin. This finding supports the view that tapasin bridges the association between class I and TAP and implicates residue 222 as a site of contact with tapasin. The inability of Dd(E222K) to interact with tapasin and TAP results in impaired peptide loading within the endoplasmic reticulum. However, significant acquisition of peptides can still be detected as assessed by the decay kinetics of cell surface Dd(E222K) molecules and by the finding that prolonged viral infection accumulates sufficient target structures to stimulate T cells at 50% the level observed with wild-type Dd. Thus, although interaction with tapasin and TAP enhances peptide loading, it is not essential. Finally, a cohort of Dd(E222K) molecules decays more rapidly on the cell surface compared with wild-type Dd molecules but much more slowly than peptide-deficient molecules. This suggests that some of the peptides obtained in the absence of an interaction with tapasin and TAP are suboptimal, suggesting a peptide-editing function for tapasin/TAP in addition to their role in enhancing peptide loading.  相似文献   

4.
The assembly of newly synthesized MHC class I molecules within the endoplasmic reticulum and their association with the transporter associated with antigen processing (TAP) is a process involving the chaperones calnexin and calreticulin. Using peptide mapping by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify a new component, we now introduce a third molecular chaperone, the thiol-dependent reductase ER-60 (ERp57/GRP58/ERp61/HIP-70/Q2), into this process. ER-60 is found in MHC class I heavy chain complexes with calnexin that are generated early during the MHC class I assembly pathway. The thiol reductase activity of ER-60 raises the possibility that ER-60 is involved in the disulfide bond formation within heavy chains. In addition, ER-60 is part of the late assembly complexes consisting of MHC class I, tapasin, TAP, calreticulin and calnexin. In a beta2-microglobulin (beta2m)-negative mouse cell line, S3, ER-60-calnexin-heavy chain complexes are shown to bind to TAP, suggesting that beta2m is not required for the association of MHC class I heavy chains with TAP.  相似文献   

5.
Intracellular antigens are continually presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules, which consist of a polymorphic 43 kDa heavy chain and a 12 kDa soluble subunit beta 2-microglobulin (beta 2m), and which bind an 8-10 amino-acid antigenic peptide. The assembly of this trimolecular complex takes place in the lumen of the endoplasmic reticulum (ER) and almost certainly requires cofactors. Most MHC class I molecules in the ER that have not yet acquired peptide are simultaneously bound to the transporter associated with antigen processing (TAP), to the 48 kDa glycoprotein tapasin and to the lectin-like chaperone calreticulin, in a multicomponent 'loading complex'. Previous studies have shown that a mutant MHC class I molecule T134K (in which Thr134 was changed to Lys) fails to bind to TAP. Here, we show that this point mutation also disrupted, directly or indirectly, the interaction between MHC class I molecules and calreticulin. T134K molecules did not present viral antigens to T cells even though they bound peptide and beta 2m normally in vitro. They exited the ER rapidly as 'empty' MHC class I complexes, unlike empty wild-type molecules which are retained in the ER and degraded. We show here that, paradoxically, the rapid exit of empty T134K molecules from the ER was dependent on a TAP-derived supply of peptides. This implies that MHC class I assembly is a two-stage process: initial binding of suboptimal peptides is followed by peptide optimisation that depends on temporary ER retention.  相似文献   

6.
Tapasin is a resident ER protein believed to be critical for antigen presentation by HLA class I molecules. We demonstrate that allelic variation in MHC class I molecules influences their dependence on tapasin for peptide loading and antigen presentation. HLA-B*2705 molecules achieve high levels of surface expression and present specific viral peptides in the absence of tapasin. In contrast, HLA-B*4402 molecules are highly dependent upon human tapasin for these functions, while HLA-B8 molecules are intermediate in this regard. Significantly, HLA-B*2705 like HLA-B*4402, requires tapasin to associate efficiently with TAP (transporters associated with antigen processing). The unusual ability of HLA-B*2705 to form peptide complexes without associating with TAP or tapasin confers flexibility in the repertoire of peptides presented by this molecule. We speculate that these properties might contribute to the role of HLA-B27 in conferring susceptibility to inflammatory spondyloarthropathies.  相似文献   

7.
Tapasin is a 48-kDa endoplasmic reticulum (ER)-resident glycoprotein that binds to the transporter associated with antigen processing (TAP) and mediates an interaction between TAP and newly synthesized MHC class I molecules. It is also essential for the proper antigen presenting function of HLA-A*0101 (HLA-A1), HLA-A*0801 (HLA-B8) and HLA-B*4402 (HLA-B4402). We show here that while tapasin is required for HLA-A*0201 (HLA-A2) molecules to bind to TAP, its absence does not block the presentation of HLA-A2-restricted TAP-dependent epitopes to cytotoxic T lymphocytes indicating that, unlike HLA-A1, HLA-B8 and HLA-B4402, HLA-A2 has access to the TAP-dependent peptide pool even in the absence of tapasin. Nevertheless, the overall efficiency with which HLA-A2 was loaded with optimal, stabilizing peptides was impaired in the cell line .220, resulting in a significant increase in the fraction of HLA-A2 molecules being released from the ER in a "peptide-receptive" state.  相似文献   

8.
Major histocompatibility complex (MHC) class I molecules are trimolecular complexes consisting of a heavy chain (HC), beta2-microglobulin (beta2m), and a short peptide. Assembly of MHC class I molecules is thought to take place early during biosynthesis. Deficiency in either beta2m or the transporter associated with antigen processing (TAP) results in accumulation of class I molecules in the endoplasmic reticulum (ER). In this study, we have assessed peptide binding to TAP and MHC class I in purified microsomes derived from wild-type, TAP1(-/-), beta2m-/-, and TAP1/beta2m-/- mice using a cross-linkable H-2Kb-binding peptide. This enabled us to study the influence of an intact TAP complex and beta2m on peptide binding to MHC class I and to analyze the stepwise interaction of peptide with TAP and MHC class I molecules. Peptide bound both immature and mature (terminally glycosylated) class I molecules in intact as well as permeabilized microsomes from wild-type mice. Efficient peptide binding to immature class I molecules was also detected in permeabilized microsomes from TAP1(-/-) mice. In contrast, no peptide binding to beta2m-free HC was detected in permeabilized microsomes from beta2m-/- and TAP1/beta2m-/- mice. However, the addition of exogenous beta2m allowed peptide binding to class I in permeabilized beta2m-/- and TAP1/beta2m-/- microsomes. These results demonstrate that a preformed class I HC middle dotbeta2m heterodimer is necessary for efficient peptide binding under physiological conditions. The observed peptide binding to class I in permeabilized TAP1(-/-) microsomes further suggests that TAP1 is not required for peptide binding to class I in the ER. Finally, kinetic studies allowed the demonstration of a stepwise binding of peptide to TAP, subsequent translocation across the ER membrane, a step that required ATP hydrolysis, and binding of peptide to preformed class I HC.beta2m heterodimers.  相似文献   

9.
An important mammalian defence strategy against intracellular pathogens is the presentation of cytoplasmically derived short peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes. MHC class I molecules assemble in the endoplasmic reticulum (ER) with chaperones, including calnexin and calreticulin, before binding to the transporter associated with antigen processing (TAP). We show here that the thiol-dependent reductase ERp57 (also known as ER60 protease) is involved in MHC class I assembly. ERp57 co-purified with the rat TAP complex (comprising TAP1 and TAP2), and associated with MHC class I molecules at an early stage in their biosynthesis. This association was sensitive to castanospermine, which inhibits the processing of glycoproteins. Human MHC class I molecules were also found to associate with ERp57. We conclude that ERp57 is a newly identified component of the MHC class I pathway, and that it appears to interact with MHC class I molecules before they associate with TAP.  相似文献   

10.
Ag presentation by APC to class II MHC-restricted T cells involves a sequence of events: 1) intracellular processing of protein Ag into immunogenic peptides, 2) specific binding of peptides to class II MHC molecules, and then 3) transport of the MHC-peptide complexes to the plasma membrane. The critical event in the activation of T cells by APC is the recognition of MHC-associated antigenic determinants by the TCR/CD3 complex. In this report we describe the isolation and characterization of a mutant APC with a defect in an intracellular process that results in its inability to form MHC-peptide complexes for recognition by T cells. The mutant APC cannot present many different protein Ag with both I-A and I-E molecules but is able to present processing-independent peptides. The functional defect in the mutant APC is not caused by either a decrease in expression or a structural mutation in class II MHC molecules. Further, there is no mutation in the invariant chain (li) and it displays a normal kinetics of association and dissociation from the class II MHC molecules during biosynthesis. Although the mutation is not in the genes encoding for the class II MHC molecules or li, the mutant APC expresses class II MHC molecules with distinct serological epitopes suggestive of an altered conformation. Pulse-chase experiments suggest that a conformational difference between I-Ad molecules of wild-type and mutant cells occurs after the class II molecules exit from the endoplasmic reticulum but while they are still associated with li. The mutant cell produces few compact (SDS-resistant) class II heterodimers. This mutant APC provides a tool for studying the cell biology of Ag processing and presentation.  相似文献   

11.
The proper folding and assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER) is an intricate process involving a number of components. Nascent heavy chains of MHC class I molecules, translocated into the ER membrane, are rapidly glycosylated and bind the transmembrane chaperone calnexin. In humans, after dissociation from calnexin, fully oxidized MHC class I heavy chains associate with beta 2-microglobulin (beta 2m) and the soluble chaperone calreticulin. This complex interacts with another transmembrane protein, tapasin, which is believed to assist in MHC class I folding as well as in mediating the interaction between assembling MHC class I molecules and the transporter associated with antigen processing (TAP). The TAP heterodimer (TAP1-TAP2) introduces the final component of the MHC class I molecule by translocating peptides, predominately generated by the proteasome, from the cytosol into the ER where they can bind dimers of beta 2M and the MHC class I heavy chain. Recently, the thiol oxidoreductase ERp57--also known as GRP58, ERp61, ER60, Q2, HIP-70, and CPT and first misidentified as phospholipase C-alpha--has been shown to bind in conjunction with calnexin or calreticulin to a number of newly synthesized ER glycoproteins when their N-linked glycans are trimmed by glucosidases I and II. It was speculated that ERp57 is a generic component of the glycan-dependent ER quality control system. Here, we show that ERp57 is a component of the MHC class I peptide-loading complex. ERp57 might influence the folding of MHC class I molecules at a critical step in peptide loading.  相似文献   

12.
Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands. As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.  相似文献   

13.
14.
To study the requirements for assembly of MHC class I molecules with antigenic peptides in the endoplasmic reticulum (ER), we studied Ag processing in insect cells. Insects lack a class I recognition system, and their cells therefore provide a "blank slate" for identifying the proteins that have evolved to facilitate assembly of class I molecules in vertebrate cells. H-2Kb heavy chain, mouse beta 2-microglobulin, and an ER-targeted version of a peptide corresponding to Ova(257-264) were expressed in insect cells using recombinant vaccinia viruses. Cell surface expression of Kb-OVA(257-264) complexes was quantitated using a recently described complex-specific mAb (25-D1.16). Relative to TAP-deficient human cells, insect cells expressed comparable levels of native, peptide-receptive cell surface Kb molecules, but generated cell surface Kb-OVA(257-264) complexes at least 20-fold less efficiently from ER-targeted peptides. The inefficient assembly of Kb-OVA(257-264) complexes in the ER of insect cells cannot be attributed solely to a requirement for human tapasin, since first, human cells lacking tapasin expressed endogenously synthesized Kb-OVA(257-264) complexes at levels comparable to tapasin-expressing cells, and second, vaccinia virus-mediated expression of human tapasin in insect cells did not detectably enhance the expression of Kb-OVA(257-264) complexes. The assembly of Kb-OVA(257-264) complexes could be greatly enhanced in insect but not human cells by a nonproteasomal protease inhibitor. These findings indicate that insect cells lack one or more factors required for the efficient assembly of class I-peptide complexes in vertebrate cells and are consistent with the idea that the missing component acts to protect antigenic peptides or their immediate precursors from degradation.  相似文献   

15.
Efficient recognition of tumor cells by cytolytic T lymphocytes (CTL) is often dependent on the presentation of cytosolic peptides in the context of MHC class I molecules. This process may be influenced by various molecular chaperones. To analyze this influence, we have utilized B16 melanoma cells, which are not effectively recognized by MHC class I-restricted CTL. This resistance to CTL is apparently due to a very low level of surface MHC expression. We have found that stably transfected clones of B16 which constitutively express the human heat shock protein 72 (Hsp72) exhibit significantly increased levels of MHC class I antigens on their surface. This Hsp72-mediated up-regulation of surface MHC class I antigen represents an increase in the amount of functional MHC-peptide complexes as measured by conformation-dependent antibodies and recognition by MHC class I-restricted CTL. Expression of Hsp72 did not improve the antigen presentation defect in cells lacking the activity of the transporter associated with antigen presentation (TAP). Moreover, mice immunized with Hsp72-expressing B16 cells, but not with control-transfected B16 cells, display significantly increased resistance to a subsequent challenge with live, wild-type B16. Together, our data demonstrate that the immune recognition of tumor cells can be substantially enhanced by the suitable expression of a molecular chaperone.  相似文献   

16.
The cell surface glycoprotein CD8 functions as a coreceptor with the TCR for interaction with MHC class I. The cocrystal structure of the CD8 alpha alpha-MHC complex showed that one CD8 Ig domain provided the majority of the contact with MHC class I and that residue R4 of that domain contacted the alpha2 domain of MHC class I. We previously showed by mutational analysis that this residue was critical for binding to MHC class I. To determine which of the Ig domains for the CD8 alpha beta heterodimer would make the most contact with class I MHC, we expressed single-chain or dimeric forms of CD8 on COS-7 cells and measured the adhesion of MHC class I positive cells. We found that when one of the R4 residues was mutated in a CD8 alpha alpha homodimer binding comparable to that of wild type was observed, whereas a double R4 mutant severely impaired binding. However, when mutant CD8 alpha (R4K) was coexpressed with wild-type CD8 beta, binding was not observed. These results support the model in which it is CD8 alpha, not CD8 beta, that is making the most of the contact with MHC class I, including the alpha 2 domain. In addition, they demonstrate that a single-chain form of CD8 alpha alpha can bind to MHC class I.  相似文献   

17.
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) is based on the ability to stabilise MHC class I molecules from mutant cell lines by the addition of suitable peptides. Such cell lines lack a functional transporter associated with antigen presentation (TAP) and as a result accumulate empty, unstable class I molecules in the ER. These dissociate rapidly in cell lysates unless they are stabilised by the addition of an appropriate binding peptide during lysis. The extent of stabilisation of class I molecules is directly related to the binding affinity of the added peptide. However, some MHC class I molecules, including HLA-B * 2705 and H-2Kk are unusually stable in their peptide-receptive state making them inappropriate for analysis using this assay or assays which depend on the ability of peptides to stabilise MHC class I molecules at the cell surface. Here we present an improved method that permits reliable measurements of peptide binding to such class I MHC molecules that are unusually stable in the absence of peptide. Cells are lysed in the presence of peptide and incubated at 4 degrees C. After 2 h, during which peptide binding to empty MHC molecules occurs, the lysate is heated to a temperature which preferentially destabilises those MHC molecules that remain empty. We have used this technique to assay peptide binding to HLA-B * 2705, as well as to the murine allele H-2Kk which also displays a stable phenotype when transfected into TAP-deficient T2 cells and show that this method represents a marked improvement over previous methods in terms of lower background signal and higher recovery of peptide bound molecules.  相似文献   

18.
The mouse CD1 (mCD1) molecule is a class I-like molecule that is encoded outside of the MHC. We show here that mCD1 shares several properties with Ag-presenting class I molecules, including a requirement for beta2-microglobulin for stable cell-surface expression in T lymphocyte transfectants and thymocytes. mCD1 is also capable of binding to mouse CD8alphabeta heterodimers participating in the activation of CD8+ T cells in a manner similar to classical class I molecules. However, mCD1 surface expression is not decreased at high temperatures in cells that lack the transporter associated with Ag processing (TAP), including both RMA-S and Drosophila melanogaster cells. The data indicate that mCD1 does not require TAP to be expressed in a stable fashion at the cell surface. We speculate that the ability of mCD1 to reach the cell surface in transporter-deficient cells may reflect its ability to present a distinct set of ligands. The properties of mCD1 described here can account, in part, for the selection of the diverse populations of T cells that are known to be mCD1 reactive.  相似文献   

19.
20.
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules depends on translocation of cytosolic peptides into the endoplasmic reticulum (ER) by transporters associated with antigen processing (TAP). Peptide transport by TAP is thought to include at least two steps: initial binding of peptide to TAP, and its subsequent translocation requiring ATP hydrolysis. These events can be monitored in peptide binding and transport assays. Previous studies have shown that the efficiency of peptide transport by human, mouse and rat transporters varies according to the C-terminals of peptide substrates in an allele and species-specific manner. However, it has not been clear during which step of peptide interaction with TAP selection occurs. We used an assay monitoring the peptide binding step to study the binding affinity of a library of 199 peptides for human TAP and the two major allelic rat TAP complexes. We observed a dominant influence of the C-terminus on peptide binding affinity for all transporters, and highly restrictive selection of peptides with aliphatic and aromatic C-terminals by rat TAP1/TAP2u complexes. The selectivity of peptide binding to rat TAP complexes is in full accordance with published data on selective peptide transport and on control of antigen presentation by rat TAP. These results strongly suggest that (i) peptide selection by TAP occurs exclusively in the initial binding step; (ii) all factors involved in peptide selection by TAP are present in insect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号