首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于认知无线电系统的新型合作功率控制博弈算法   总被引:1,自引:0,他引:1  
程世伦  杨震  张晖 《通信学报》2007,28(8):54-60
以改进的空时分集OFDM-CDMA系统为基础,研究已认知频谱资源的公平分配问题,根据信道状况,吞吐量最大化和功率限制需求,提出了一种合作功率控制纳什议价博弈算法,以有效地降低认知用户(secondary users)的发射功率,提高网络吞吐量。仿真结果表明该算法满足了认知用户公平共享频谱资源的需求,在相同功率消耗情况下,网络吞吐量显著提高。  相似文献   

2.
一种新的认知无线电非合作功率控制博弈算法   总被引:1,自引:0,他引:1  
当认知无线电网络以"衬底式"(Underlay)的方式与主用户网络共享频谱时,需要对认知用户进行功率控制,以确保认知用户在不干扰主用户的前提下,公平地共享认知频谱资源。利用博弈分析的方法,设计了一个基于链路增益因子的代价函数,并据此提出了一种新的非合作功率控制博弈算法。仿真结果表明,该算法的均衡结果既改善了用户的帕累托(Pareto)性能,又提高了链路增益较差的用户的吞吐量,实现了网络资源的平等共享。  相似文献   

3.
为解决混合overlay/underlay频谱共享方式下多用户动态频谱分配问题,构建了混合频谱共享方式下动态频谱分配模型,提出了基于Q学习的多用户动态频谱分配算法. 该算法在不对主用户产生有害干扰的前提下,以最大化次用户总吞吐量为目标,构建了与次用户相对应的虚拟次用户作为智能体. 通过与环境交互学习,进行信道和共享方式初选;频谱分配系统根据冲突情况和各智能体的学习结果调整信道分配策略直至次用户间无冲突. 仿真结果表明,该算法在无信道检测和信道先验知识的条件下,能根据前一时隙信道状态和次用户传输速率需求,实现动态信道分配和频谱共享方式确定,避免次用户间冲突,减少主次用户间冲突,有效提升次用户总吞吐量.  相似文献   

4.
针对非时隙主用户网络,研究了单个次用户在周期性感知框架下的机会频谱接入问题。通过建立次用户信道感知和接入模型,提出了一种基于次用户请求业务数据包长度的机会频谱接入算法。该算法根据每个时隙分配给次用户业务数据包长度,自适应调整机会频谱接入策略。仿真结果表明,所提算法能够在干扰水平要求较高情况下,提高次用户平均有效传输吞吐量的同时,实现有效吞吐量与碰撞概率的折中;同时当外部环境发生变化时算法具有较强的鲁棒性。  相似文献   

5.
由于当前已有方法未能对用户需求进行分析,导致可见光通信异构网络系统吞吐量以及平均满意度下降。为此,提出一种可见光通信异构网络频谱资源分配算法。将可见光通信异构网络系统最大容量作为目标,综合考虑用户需求以及最大功率限制等约束,构建可见光通信异构网络频谱资源分配模型。将模型中的对偶问题分解为简单的子问题,通过定向变异的遗传算法进行信道分配,采用拍卖算法进行信道内功率分配,最终实现网络频谱资源分配。实验结果表明,所提算法可以有效提升可见光通信异构网络系统吞吐量以及平均满意度。  相似文献   

6.
陈赓  夏玮玮  沈连丰 《通信学报》2014,35(12):78-88
针对异构无线网络融合环境提出了一种基于多门限预留机制的自适应带宽分配算法,从而为多业务提供QoS保证。该算法采用多宿主传输机制,通过预设各个网络中不同业务的带宽分配门限,并基于各个网络中不同业务和用户的带宽分配矩阵,根据业务k支持的传输速率等级需求和网络状态的变化,将自适应带宽分配问题转化为一个动态优化问题并采用迭代方法来求解,在得到各个网络中不同业务和用户优化的带宽分配矩阵的同时,在带宽预留门限和网络容量的约束条件下实现网络实时吞吐量的最大化,以提高整个异构网络带宽的利用效率。数值仿真结果显示,所提算法能够支持满足QoS需求的传输速率等级,减小了新用户接入异构网络的阻塞概率,提高了平均用户接入率并将网络吞吐量最大提高40%。  相似文献   

7.
陈媛媛  王晶晶 《电子测试》2012,(11):23-26,36
本文基于Goodman提出的非合作博弈功率控制模型改进了代价函数。针对感知无线电系统(CR)中各用户的通信需求,采用多载波码分多址(MC-CDMA)感知无线电系统,解决感知用户对主用户干扰和通信中断等问题,为实现感知频谱资源的有效分配,提出了一种新的感知无线电系统功率控制博弈算法。通过仿真表明,该算法同几种经典算法相比,既满足不同种类用户SIR要求,又提高了系统吞吐量,实现了对不同用户发射功率的有效控制,且系统性能明显提高。  相似文献   

8.
在密集小区的认知无线电非正交多址(cognitive radio non-orthogonal multiple access, CRNOMA)网络场景下,针对用户采取Underlay方式复用时信道频带利用率低的问题,提出了一种基于能效的组合用户动态功率分配算法.该算法在保证主用户服务质量前提下,基于用户之间的干扰和信干噪比,优化了组合多用户的接入方案,使信道接入用户数量最大且提高了频带利用率.同时,根据增益排序下的功率差额配比改进了剩余功率再分配方案,使空闲功率重新利用更加合理和有效.仿真结果表明,本文算法可以有效实现接入用户数量最大化的同时提高了频谱利用率.  相似文献   

9.
认知无线电与能量的结合提高了频谱的利用效率和对绿色能源的使用。为减弱对主用户的干扰以及次用户功率分配的有峰值限制,文章首先分析了认知无线电网络的系统模型,进而阐述了动态吞吐量最大化分配算法,最后通过实验分析和验证说明了该课题的最优功率控制的独特性和完备性。  相似文献   

10.
针对非理想感知情况下感知时间与频谱分配联合优化问题,同时考虑漏检与主用户重新占用频谱两种场景所造成的主次用户碰撞,并通过量化主用户对认知用户的干扰,给出有无主用户存在时认知系统可获得的吞吐量。在总传输功率约束以及对主用户的最大干扰功率约束两个限制条件下,以最大化系统平均吞吐量为优化目标,给出感知时间与频谱分配联合优化算法。算法首先通过折半法搜索最优感知时间,在既定的感知时间下,将子信道分配给能获得最大平均吞吐量的认知用户,在此基础上,利用凸优化相关理论求得最优功率分配。仿真结果表明,本文所提算法相比于传统频谱分配算法系统平均吞吐量性能提升了10%左右。  相似文献   

11.
D2D通信是未来5G网络中一种近距离直通通信方式,在通信过程中,信息直接由发送端传给接收用户,而不需要经过基站的转发.在传统蜂窝网络中引入D2D通信可以极大地提升系统的总吞吐量、增大频谱资源的利用率以及降低发射终端的功耗.主要介绍了一种适用于混合D2D蜂窝网络中的资源分配方法,通过拉格朗日乘子法结合模拟退火算法实现频谱资源的分配,提出一种同时考虑信道容量和能耗的基于模拟退火算法的资源调度策略.本算法在维也纳仿真平台上经仿真验证,相比于传统贪婪优化算法,可以明显增大系统总吞吐量和频谱资源利用率.另外,算法中采用了分布式资源调度方法,D2D用户根据算法步骤自行搜索适合的目标信道并计算其发射功率,可以有效减少基站的信令开销.  相似文献   

12.
This paper considers the important problem of efficient allocation of available resources (such as radio spectrum and power) in orthogonal frequency-division multiple-access (OFDMA)-based multicast wireless systems. Taking the maximization of system throughput as the design objective, three novel efficient resource-allocation schemes with reduced computational complexity are proposed under constraints on total bandwidth and transmitted power at the base station (BS). Distinct from existing approaches in the literature, our formulation and solution methods also provide an effective and flexible means to share the available radio spectrum among multicast groups by guaranteeing minimum numbers of subcarriers to be assigned to individual groups. The first two proposed schemes are based on the separate optimization of subcarriers and power, where subcarriers are assigned with the assumption of uniform power distribution, followed by water filling of the total available transmitted power over the determined subcarrier allocation. In the third scheme, which is essentially a modified genetic algorithm (GA), each individual of the entire population represents a subcarrier assignment, whose fitness value is the system sum rate computed on the basis of the power water-filling procedure. Numerical results show that with a flexible spectrum-sharing control mechanism, the proposed designs are able to more flexibly and fairly distribute the total available bandwidth among multicast groups and, at the same time, achieve a high system throughput.   相似文献   

13.
In wireless networks, portable terminals are usually powered by battery, and they communicate through the free-space spectrum. Therefore, both the transmission power and bandwidth are scarce resources. Artificial power capture is a simple and effective method to exploit the transmission bandwidth to give a higher throughput, but it may consume a larger mean transmission power because some packets are transmitted at higher power. In this paper, we analyze the mean power consumption of artificial power capture, and formulate two capture control problems which regulate the mean power consumption and the throughput. The analysis reveals that, although some packets are transmitted at higher power, artificial power capture has a smaller mean power consumption than the case without capture when the traffic is sufficiently heavy. This is because artificial power capture can significantly increase the probability of successful transmission at heavy traffic, and hence the mean power consumed for successfully transmitting a packet is smaller  相似文献   

14.
Joint scheduling and power control schemes have previously been proposed to reduce power dissipation in wireless ad hoc networks. However, instead of power consumption, throughput is a more important performance concern for some emerging multihop wireless networks, such as wireless mesh networks. This paper examines joint link scheduling and power control with the objective of throughput improvement. The MAximum THroughput link Scheduling with Power Control (MATH-SPC) problem is first formulated and then a mixed integer linear programming (MILP) formulation is presented to provide optimal solutions. However, simply maximizing the throughput may lead to a severe bias on bandwidth allocation among links. To achieve a good tradeoff between throughput and fairness, a new parameter called the demand satisfaction factor (DSF) to characterize the fairness of bandwidth allocation and formulate the MAximum Throughput fAir link Scheduling with Power Control (MATA-SPC) problem is defined. An MILP formulation and an effective polynomial-time heuristic algorithm, namely, the serial linear programming rounding (SLPR) heuristic, to solve the MATA-SPC problem are also presented. Numerical results show that bandwidth can be fairly allocated among all links/flows by solving the MILP formulation or by using the heuristic algorithm at the cost of a minor reduction of network throughput. In addition, extensions to end-to-end throughput and fairness and multiradio wireless multihop networks are discussed.  相似文献   

15.
We propose in this paper a dual-antenna-array (with transmitter antenna array and receiver antenna array) architecture, where the antenna elements are divided into several antenna element sets and each traffic channel is transmitted over an antenna element set, to realize the multiple traffic channels set up by a user. A SINR feedback based algorithm, which can regulate the transmission rate by iteratively adjusting the power on each traffic channel, is proposed to execute the rate control for the proposed dual-antenna-array architecture under cochannel interference. It is shown that the proposed algorithm can make the throughput meet the throughput requirement or achieve the weighted bandwidth sharing for certain fairness. In addition, we further propose a traffic channel configuration algorithm to help the SINR feedback based algorithm find the optimal traffic channel configuration that can meet the throughput requirement for each traffic channel or results in the maximal total throughput for each user.  相似文献   

16.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a study of a cross‐layer design through joint optimization of spectrum allocation and power control for cognitive radio networks (CRNs). The spectrum of interest is divided into independent channels licensed to a set of primary users (PUs). The secondary users are activated only if the transmissions do not cause excessive interference to PUs. In particular, this paper studies the downlink channel assignment and power control in a CRN with the coexistence of PUs and secondary users. The objective was to maximize the total throughput of a CRN. A mathematical model is presented and subsequently formulated as a binary integer programming problem, which belongs to the class of non‐deterministic polynomial‐time hard problems. Subsequently, we develop a distributed algorithm to obtain sub‐optimal results with lower computational complexity. The distributed algorithm iteratively improves the network throughput, which consists of several modules including maximum power calculation, excluded channel sets recording, base station throughput estimation, base station sorting, and channel usage implementation. Through investigating the impacts of the different parameters, simulation results demonstrates that the distributed algorithm can achieve a better performance than two other schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
To regulate the transmit-power and enhance the total throughput, a novel Transmit Power Control Game (TPCG) algorithm and an adaptive Modulation TPCG (M-TPCG) algorithm which combine bandwidth allocation, adaptive modulation and transmit-power control based on Space Time Block Coding (STBC) OFDM-CDMA system are designed and a cross-layer framework of database sharing is proposed. Simulation results show that the TPCG algorithm can regulate their transmitter powers and enhance the total throughput effectively, M-TPCG algorithm can achieve maximal system throughput. The performance of the cognitive radio system is improved obviously.  相似文献   

19.
In cooperative spectrum sensing,more secondary user makes more opportunity for detecting the vacant spectrums,which resulting the spectrum utilization improved,however much bandwidth would be occupied for sending the local observation results,inducing the reduced secondary throughput.In this paper,an adaptive algorithm for selecting detection threshold was proposed,where the maximized secondary throughput can always be achieved while assuring sufficient protection to primary user,regardless of the number of...  相似文献   

20.
To alleviate the shortage of spectrum resources and improve the power utilization of cognitive radio networks,a resource allocation algorithm of full duplex cognitive relay networks with energy harvesting was proposed.In the algorithm,the coefficient for power splitting of the relay and the transmit power of the secondary users were jointly optimized to maximize the throughput of the secondary users under the interference to primary users and energy harvesting constraints.Since the optimization of the algorithm was non-convex,it was transformed into two sub-optimizations,the sub-optimization of the coefficient for power splitting and the sub-optimization of the power transmitted of secondary users,which were the solvable convex sub-optimizations.Then,the final solution of the original optimization was obtained with the iterative algorithm.Simulation results show that the throughput of the proposed algorithm,can obtain 2 times throughput of the networks with half-duplex power splitting algorithm and 1.5 times throughput of the networks with full-duplex time switching algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号