首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

3.
4.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

5.
The fracture energies and spalling resistance of high-Al2O3 refractories were studied. The fracture energies, γ WOF and γ NBT , were measured by the work-of-fracture and the notched-beam-test methods, respectively. Spalling resistance, as measured by the relative strength retained in a water quench, correlated well with the thermal-stress resistance parameter applicable to stable crack propagation under conditions of thermal shock, (γ WOF 2 E 0). Many of the refractories exhibited high ratios of γWOF to γNBT; such high ratios were shown analytically to maximize the parameter ( R 1111= E 0γWOF/S12) which describes the resistance to catastrophic spalling. The increase of crack length with increasing quenching temperature difference (Δ T ) was somewhat less than that predicted theoretically; the discrepancy was attributed to an increase of crack density with Δ T . In general, the results show that fracture energy is important in establishing the spalling resistance of high-Al2O3 refractories.  相似文献   

6.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

7.
Oriented samples of Al2O3-ZrO2 (Y2O3) eutectics consisting of an alumina matrix with zirconia dispersoids were grown by directional solidification. Preferred growth directions and epitaxial relations were determined from X-ray and electron diffraction analyses. Imaging of interfaces was performed by high-resolution transmission electron microscopy on oriented platelets. Semicoherent interfaces were observed with faceting along crystallographic planes of both phases.  相似文献   

8.
The addition of ThO2 to Y2O3 inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of ThO2 solute at the grain boundaries, causing a decrease in the grain-boundary mobility. The segregation of ThO2 at the grain boundaries can be inferred from the results of the microhardness and grain-growth studies presented. Further evidence for segregation is provided by quenching experiments and surface activity experiments.  相似文献   

9.
The fracture toughness of 3 mol% Y2O3-ZrO2 (3Y-PSZ) composites containing 10–30 vol% Al2O3 with different particle sizes was investigated. It was found that Al2O3 dispersion of up to 30 vol% increased the fracture toughness by 17% to 30%, and the toughness increase was more remarkable in the composite dispersed with Al2O3 particles of larger sizes. By combining the effects of the dispersion toughening and phase transformation toughening, the toughness change in the present materials was theoretically predicted, which was in good agreement with the experimental data.  相似文献   

10.
Cr2O3 and ZrO2 were mixed in various ratios and pressed to form compacts, which were then sintered in carbon powder. Compacts with >30 wt% Cr2O3 were sintered to densities >98% of true density at 1500°C. This method of sintering in carbon powder can be used to prepare very dense Cr2O3-ZrO2 ceramics at a relatively low temperature, (∼1500°C) without additives.  相似文献   

11.
12.
Al2O3-ZrO2 eutectics containing 0 to 12.2 mol% Y2O3 (with respect to zirconia) were produced by directional solidification using the laser floating zone (LFZ) method. Processing variables were chosen to obtain homogeneous, colony-free, interpenetrating microstructure for all of the compositional range, optimum from the viewpoint of mechanical properties. The amount of cubic, tetragonal, or monoclinic zirconia phases was determined using a combination of Raman and X-ray diffraction techniques. Monoclinic zirconia was present up to concentrations of 3 mol% Y2O3, while the amount of tetragonal zirconia gradually increased with yttria content up to 3 mol%. Cubic zirconia was the only phase detected when the yttria content reached 12 mol%. The residual stresses in alumina were measured using the shift of the ruby R lines. Compressive stresses were isotropic when measured in the samples containing tetragonal and cubic zirconia, while higher tensile, anisotropic stresses were found when monoclinic zirconia was present. They were partially relieved in the eutectic sample without yttria. These results were compared with a thermoelastic analysis based on the self-consistent model.  相似文献   

13.
Detailed microstructural analysis of a 10 mol% Y2O3 fluxed hot-pressed silicon nitride reveals that, in addition to the yttrium-silicon oxynitride phase located at the multiple Si3N4 grain junctions, there is a thin boundary phase 10 to 80 Å wide separating the silicon nitride and the oxynitride grains. Also, X-ray microanalysis from regions as small as 200 Å across demonstrates that the yttrium-silicon oxynitride, Y2Si(Si2O3N4), phase can accommodate appreciable quantities of Ti, W, Fe, Ni, Co, Ca, Mg, Al, and Zn in solid solution. This finding, together with observations of highly prismatic Si3N4 grains enveloped by Y2Si(Si2O3N4), suggests that densification occurred by a liquid-phase "solution-reprecipitation" process.  相似文献   

14.
The strength and fracture of a directionally solidified Y3Al5O12/Al2O3 eutectic fiber were investigated. The fiber was grown continuously by an edge-defined film-fed growth technique. The microstructure was characterized using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The tensile strength and Weibull's modulus of the eutectic fibers were determined in the as-fabricated state and after extended thermal exposure at 1460°C in air. Fractographic analysis was used to identify and classify the strength-limiting mechanisms. The fracture toughness and crack growth behavior were characterized by an indentation technique. A fracture mechanics analysis was also used to establish the relationships between surface flaw size, tensile strength, and fracture toughness of the fiber.  相似文献   

15.
16.
17.
It has been well accepted that polyethylene imine (PEI) is an effective dispersant for silicon carbide (SiC) in aqueous media. However, after the addition of sintering additives (Al2O3 and Y2O3), this dispersing effect is reduced significantly. In this work, a second dispersant, citric acid, was used to resolve this problem. It was found that citric acid could decrease the slurry viscosity (without sintering additives) and enhance the PEI adsorption on SiC particle surface. The optimal amount of citric acid required to achieve a minimum viscosity for 55 vol% SiC suspensions was equal to ∼0.87 wt% (at pH ∼6.8). With the aid of citric acid, well-stabilized SiC suspensions (containing sintering additives) were realized, which exhibited slight shear thinning rheologies. After tape casting and SPS sintering, dense SiC samples were obtained with a homogeneous fine-crystalline microstructure. Results showed that citric acid was an effective dispersant for improving the dispersion of SiC particles containing sintering additives.  相似文献   

18.
Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3   总被引:1,自引:1,他引:0  
Isothermal and constant-grain-size sintering have been carried out to full density in Y2O3 with and without dopants, at as low as 40% of the homologous temperature. The normalized densification rate follows Herring's scaling law with a universal geometric factor that depends only on density. The frozen grain structure, however, prevents pore relocation commonly assumed in the conventional sintering models, which fail to describe our data. Suppression of grain growth but not densification is consistent with a grain boundary network pinned by triple-point junctions, which have a higher activation energy for migration than grain boundaries. Long transients in sintering and grain growth have provided further evidence of relaxation and threshold processes at the grain boundary/triple point.  相似文献   

19.
Transmission electron microscopic analyses defined the structures and compositions in single-phase and two-phase La2O3-doped Y2O3 materials fabricated by the transient solid second-phase sintering. The composition in single-phase, 10-mol%-La2O3-doped, sintered and annealed samples was found to be uniform, indicating that diffusivity was sufficiently high for homogenization in the single-phase field. Two-phase, 16-mol%-La2O3-doped, sintered and annealed samples showed two morphologies: (1) intragranular, lath-like, monoclinic second-phase particles (twinned and untwinned) and (2) equiaxed cubic matrix. The second-phase particles were identified as the monoclinic phase derived from the high-temperature hexagonal phase through a rapid phase transition. A short, high-temperature anneal (2200°C for 1 min) of 9 mol% La2O3-Y2O3 composition was found to retain the hexagonal phase. Microchemical analyses of the phases suggested adjustments to the Y2O3-La2O3 phase diagram. Observation of the interactions of the intragranular second-phase particles with crack propagation indicated crack deflection as one of the mechanisms responsible for toughening (1.5 vs 0.9 MPa · m1/2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号