首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对高水头、大单宽流量闸坝工程消能问题,在分析传统底流消力池体型的基础上,提出将跌坎型底流消力池应用于高水头闸坝工程,并结合实际工程进行了水工整体模型试验,研究了消力池及下游河道水流流态、流速分布、下游河道水面线、河床冲刷情况。结果表明,跌坎底流消力池不仅体型简单、施工难度小,且在各种运行工况下均能获得稳定的流态及较高的消能率,可较好地解决高水头闸坝泄洪消能问题。  相似文献   

2.
通过模型试验研究了利用施工导流洞优化尾水调压室体型的可行性.结果表明,利用电站施工导流洞可抬高尾水调压室最低涌浪、优化调压室体型、降低工程投资.通过在施工导流洞内设置阻抗孔,可有效改善施工导流洞内水流的流态并阻止气体进入尾水隧洞.该技术可供类似工程借鉴.  相似文献   

3.
以某航电枢纽施工导流工程为例,采用MIKE21软件对施工导流中的束窄河道泄流进行了数值模拟,分析了围堰体型对束窄河道水流流态的影响,对围堰体型进行了水力优化,并利用物理试验进行了验证。数值计算及物理模型试验结果表明,优化后的围堰头部有助于减弱回流及水流侧向收缩。  相似文献   

4.
本文结合青海雪龙滩电站底流消能方案试验,对T型墩消力池的结构尺寸、水流流态、压力分布及其消能效果作了研究,并给出了T型墩消力池消能率计算公式及结构尺寸选择方法。  相似文献   

5.
针对德能湘江水电站扩容后尾水管内水流出现明显脱流与回流、效率低、空蚀加剧的状况,采用计算流体动力学CFD进行分析,提出对尾水管修形或更换转轮的方法,以改善尾水管内水流流态。研究表明此两种方法均有效,可为类似工程提供参考。  相似文献   

6.
为了改善杭州三堡泵站进水池中的不良流态,运用成熟的商业数值分析软件,从N-S方程出发,以Realizableκ-ε湍流模型作为预测进水池漩涡核心区位置的手段,模拟分析了进水池在部分运行条件下侧向水流对正向水流较大的扰动,提出了增大侧向水流与正向水流的交汇角、布置导流墩阻隔横向水流的工程整流措施(方案3),从而提高了水泵的运行效率。  相似文献   

7.
尕干水库因地形原因,在模型实验时发现消力池的设计存在着一系列问题。由于消力池结构的特殊性,左侧有一支沟会进入消力池,支沟与消力池连接段有一底坡1∶100的护坡,消力池水流流入支沟护坡形成一个较大的逆时针回流,对工程带来极大破坏。为了改善这一不良流态及对支沟附加来流的处理,将“附加动量”水跃理论应用到溢洪道消力池的优化设计当中,并通过模型试验验证,对调整过后的消力池的水流流态。压强特性、流速特性及消能机理进行分析。结果表明,优化过后的消力池水流流态良好,有效地消除了回流。压强、流速分布合理,该消力池结构优于常规消力池,因此消能率能达80%以上。消力池尺寸满足工程要求。  相似文献   

8.
为了改善侧向进水泵站进水流态,采用CFX软件对侧向进水泵站前池流态进行了数值模拟,并结合物理模型试验,研究了在前池入口处设置不同孔高比镂空式整流底坎对水流流态的影响。结果表明,在加设七种不同孔高比镂空整流底坎后,流态方面,底坎孔高比为0(无孔整流坎)时,相比不设整流底坎时进水流道前的漩涡区大幅减小,在引河处仍存在低速回流区;镂空式整流底坎设置后,进水前池回流区明显减小,当孔高比达到0.6时,漩涡和回流区基本消失,进入进水池水流无明显偏流,流态相比较好;流速均匀度方面,进口断面轴向流速均匀度随着孔高比的增加先增大后减小,当孔高比为0.6时,进水池入口处流速均匀度达到了74.27%,相比于孔高比为0时提高了6.77%,即当孔高比为0.6时流速均匀度较好。  相似文献   

9.
低弗劳德数宽尾墩多级消力池三维数值模拟   总被引:1,自引:0,他引:1  
低弗劳德数二元水跃消能效率低,当无尾坎消力池受地形限制,其长度较短且下游水位较低时水跃无法稳定在消力池内,消力池下游护坦承受较大冲刷压力,甚至护坦出口水流余能对下游河床造成严重冲刷。对此,提出采用宽尾墩联合尾坎消力池来改善消能效果,并采用RNGκ-ε紊流模型结合自由面追踪的VOF方法对宽尾墩联合尾坎消能工的水流流场进行三维数值模拟,通过宽尾墩与平尾墩、设置尾坎与不设置尾坎的综合对比分析得出,采用宽尾墩联合尾坎消能工的消能体型可有效调控水流并提高水流的消能效率,明显改善消力池内水流流态,有效减少对护坦及下游河岸冲刷。研究成果可为类似工程提供借鉴。  相似文献   

10.
对崆峒水库输水洞平板闸门改建为锥形阀后的消力池进行了模型试验研究。锥形阀消力池内流态稳定,池末端水流没有直冲消力坎且没有明显的水面跌落,消能效果较好。试验结果分析表明:当流量不同时,消力池的最优体型亦有所不同。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号