首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Immunoglobin binding protein (BiP) molecules exist as both monomers and oligomers and phosphorylated BiP is restricted to the oligomeric pool. Modified BiP is not bound to proteins such as immunoglobulin heavy chain and consequently, may constitute an inactive form. Unlike earlier analysis of mammalian BiP isolated by two-dimensional gel electrophoresis, results here demonstrated that immunoprecipitated BiP displayed predominantly threonine phosphorylation with only a trace of detectable phosphoserine. Like other Hsp70 family members, BiP is comprised of three domains: an amino terminal domain which binds nucleotide, an 18 kilodalton domain which binds peptide, and a carboxyl terminal variable domain of unknown function. Cyanogen bromide cleavage and enzymatic digestion experiments mapped threonine phosphorylation to a site within a 47 amino acid sequence of the peptide binding domain which contains seven threonine residues. Partial proteinase K digestion in the presence of ATP independently verified that the in vivo phosphorylation site of mammalian (BiP) is located within the peptide binding domain. Furthermore, phosphorylation did not impede BiPs ATP-induced conformational change. Thus, the peptide binding domain of BiP is phosphorylated on threonine residue(s) mapping to not more than two tryptic fragments within the peptide binding domain. This location on the molecule could explain why phosphorylated BiP is not detected bound to proteins in vivo.  相似文献   

2.
Binding protein (BiP) is a widely distributed and highly conserved endoplasmic-reticulum luminal protein that has been implicated in cotranslational folding of nascent polypeptides, and in the recognition and disposal of misfolded polypeptides. Analysis of cDNA sequences and genomic blots indicates that soybeans (Glycine max L. Merr.) possess a small gene family encoding BiP. The deduced sequence of BiP is very similar to that of other plant BiPs. We have examined the expression of BiP in several different terminally differentiated soybean organs including leaves, pods and seed cotyledons. Expression of BiP mRNA increases during leaf expansion while levels of BiP protein decrease. Leaf BiP mRNA is subject to temporal control, exhibiting a large difference in expression in a few hours between dusk and night. The expression of BiP mRNA varies in direct correlation with accumulation of seed storage proteins. The hybridization suggests that maturing-seed BiP is likely to be a different isoform from vegetative BiPs. Levels of BiP protein in maturing seeds vary with BiP mRNA. High levels of BiP mRNA are detected after 3 d of seedling growth. Little change in either BiP mRNA or protein levels was detected in maturing soybean pods, although BiP-protein levels decrease in fully mature pods. Persistent wounding of leaves by whiteflies induces massive overexpression of BiP mRNA while only slightly increasing BiP-protein levels. In contrast single-event puncture wounding only slightly induces additional BiP expression above the temporal variations. These observations indicate that BiP is not constitutively expressed in terminally differentiated plant organs. Expression of BiP is highest during the developmental stages of leaves, pods and seeds when their constituent cells are producing seed or vegetative storage proteins, and appears to be subject to complex regulation, including developmental, temporal and wounding.  相似文献   

3.
Proteins of the Hsp70 family of ATPases, such as BiP, function together with J proteins to bind polypeptides in numerous cellular processes. Using a solid phase binding assay, we demonstrate that a conserved segment of the J proteins, the J domain, catalytically activates BiP molecules to bind peptides in its immediate vicinity. The J domain interacts with the ATP form of BiP and stimulates hydrolysis resulting in the rapid trapping of peptides, which are then only slowly released upon nucleotide exchange. Activation by the J domain allows BiP to trap peptides or proteins that it would not bind on its own. These results explain why BiP and probably all other Hsp70s can interact with a wide range of substrates and suggest that the J partner primarily determines the substrate specificity of Hsp70s.  相似文献   

4.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.  相似文献   

5.
The 220 nucleotide 5'non-coding region (5'NCR) of the human immunoglobulin heavy chain binding protein (BiP) mRNA contains an internal ribosome entry site (IRES) that mediates the translation of the second cistron in a dicistronic mRNA in cultured mammalian cells. In this study, experiments are presented that locate the IRES immediately upstream of the start-site AUG codon in the BiP mRNA. Furthermore, crosslinking of thiouridine-labeled BiP IRES-containing RNA to cellular proteins identified the specific binding of two proteins, p60 and p95, to the 3'half of the BiP 5'NCR. Interestingly, both p60 and p95 bound also specifically to several viral IRES elements. This correlation suggests that p60 and p95 could have roles in internal initiation of cellular and viral IRES elements.  相似文献   

6.
The ER luminal binding protein, BiP, has been linked to prolamine protein body formation in rice. To obtain further information on the possible role of this chaperone in protein body formation we have cloned and sequenced a BiP cDNA homolog from rice endosperm. The rice sequence is very similar to the maize BiP exhibiting 92% nucleotide identity and 96% deduced amino acid sequence identity in the coding region. Substantial amino acid sequence homology exists between rice BiP and BiP homologs from several other plant and animal species including long stretches of conservation through the amino-terminal ATPase domain. Considerable variation, however, is observed within the putative carboxy-terminal peptide-binding domain between the plant and nonplant BiP sequences. A single hand of approximately 2.4 kb was visible when RNA gel blots of total RNA purified from seed tissue were probed with radiolabeled rice BiP cDNA. This band increased in intensity during seed development up to 10 days after flowering, and then decreased gradually until seed maturity. Protein gel blots indicated that BiP polypeptide accumulation parallels that of the prolamine polypeptides throughout seed development. Immunocytochemical analysis demonstrated that BiP is localized in a non-stochastic fashion in the endoplasmic reticulum membrane complex of developing endosperm cells. It is abundant on the periphery of the protein inclusion body but not in the central portion of the protein body or in the cisternal ER membranes connecting the protein bodies. These data support a model which proposes that BiP associates with the newly synthesized prolamine polypeptide to facilitate its folding and assembly into a protein inclusion body, and is then recycled.  相似文献   

7.
To investigate the role of each domain in BiP/GRP78 function, we have used a full-length recombinant BiP engineered to contain two enterokinase sites; one site is located after an N-terminal FLAG epitope, and a second site has been inserted at the junction between the N- and C-terminal domains (FLAG-BiP.ent). FLAG-BiP.ent oligomerizes into multiple species that interconvert with each other in a slow, concentration- and temperature-dependent equilibrium. Binding of ATP or AMP-PNP (adenosine 5'-(beta, gamma-imino)triphosphate), but not ADP, or of a peptidic substrate induces depolymerization of FLAG-BiP.ent and stabilization of monomeric species. Enterokinase cleavage of monomeric, nucleotide-free BiP.ent results in the physical dissociation of the 44-kDa N-terminal ATPase fragment (N44.ent) from the 30-kDa C-terminal substrate binding domain (C30.ent). Upon dissociation, the freed C-terminal substrate binding domain readily undergoes self-association while N44.ent remains monomeric. Enterokinase cleavage performed in the presence of a synthetic peptide prevents oligomerization of the freed C30.ent domain. Addition of ATP during enterokinase cleavage has no effect on C30.ent oligomerization. Our data clearly indicate that binding of a specific peptide onto the C-terminal domain, or ATP onto the N-terminal domain, induces internal conformational change(s) within the C30 domain that result(s) in BiP depolymerization.  相似文献   

8.
We have developed a new assay to characterize the double-stranded DNA (dsDNA) binding properties of RecA protein. This assay is based on measurement of changes in the fluorescence of a 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complex upon RecA protein binding. The binding of RecA protein to a complex of DAPI and dsDNA results in displacement of the bound DAPI, producing a decrease in the observed fluorescence. DAPI displacement is dependent on both RecA protein and ATP; dATP and, to a lesser extent, UTP and dCTP also support the DAPI displacement reaction, but dGTP, GTP, dITP and TTP do not. Binding stoichiometry for the RecA protein-dsDNA complex measured by DAPI displacement is 3 bp per RecA protein monomer in the presence of ATP. These results, taken together with data for mutant RecA proteins, suggest that this DAPI displacement assay monitors formation of the high affinity DNA binding state of RecA protein. Since this state of RecA protein defines the form of the nucleoprotein filament that is active in DNA strand exchange, these findings raise the possibility that the RecA protein-dsDNA filament may possess a homologous pairing capacity.  相似文献   

9.
Starvation of mouse hepatoma cells for essential amino acids or glucose results in the ADP-ribosylation of the molecular chaperone BiP/GRP78. Addition of the missing nutrient to the medium reverses the reaction. The signal mediating the response to environmental nutrients involves the translational efficiency. An inhibitor of proteins synthesis, cycloheximide, or reduced temperature, both of which reduce translational efficiency, stimulate the ADP-ribosylation of BiP/GRP78. Inhibition of N-linked glycosylation of proteins results in the overproduction of BiP/GRP78. The over produced protein is not ADP-ribosylated suggesting that this is the functional form of BiP/GRP78. The over produced BiP/GRP78 can, however, be ADP-ribosylated if the cells are starved for an essential amino acid. BiP/GRP78 resides in the lumen of the endoplasmic reticulum where it participates in the assembly of secretory and integral membrane proteins. ADP-ribosylation of BiP/GRP78 during starvation is probably part of a nutritional stress response which conserves limited nutrients by slowing flow through the secretory pathway.  相似文献   

10.
The activity of BiP, the major chaperone of the endoplasmic reticulum (ER) lumen, is known to be Ca2+-regulated; however, the participation of this protein in the ER storage of the cation has not yet been investigated. Here such a role is demonstrated in human epithelial (HeLa) cells transiently transfected with the hamster BiP cDNA and incubated in Ca2+-free medium, as revealed by two different techniques. In the first, co-transfected aequorin was employed as a probe for assaying either the cytosolic of the mitochondrial free Ca2+ concentration. By this approach higher Ca2+ release responses were revealed in BiP-transfected cells by experiments in which extensive store depletion was induced either by repetitive stimulation with inositol 1,4,5-trisphosphate-generating agonists or by treatment with the Ca2+ ionophore, A23187. In the second technique the cells were loaded at the equilibrium with 45Ca, and the release of the tracer observed upon treatment with thapsigargin, a blocker of the ER Ca2+ ATPases, was larger in BiP-transfected than in control cells. The latter results were obtained also when BiP was overexpressed not via transfection but as a response to ER stress by tunicamycin. These results are sustained by increases of the ER Ca2+ storage capacity rather than by artifacts or indirect readjustments induced in the cells by the overexpression of the chaperone since (a) the exogenous and endogenous BiP were both confined to the ER, (b) the expression levels of other proteins active in the ER Ca2+ storage were not changed, and (c) effects similar to those of wild type BiP were obtained with a deletion mutant devoid of chaperone activity. The specificity of the results was confirmed by parallel 45Ca experiments carried out in HeLa cells transfected with two other Ca2+-binding proteins, calreticulin and CaBP2(ERp72), only the first of which induced increases of Ca2+ capacity. We conclude that BiP has a dual function, in addition to its chaperone role it is a bona fide ER lumenal Ca2+ storage protein contributing, under resting cell conditions, to around 25% of the store, with a stoichiometry of 1-2 moles of calcium/mole of BiP.  相似文献   

11.
The MCM protein family, which consists of at least six members, has been implicated in the regulatory machinery causing DNA to replicate once in the S phase. Mammalian MCM proteins are present in the nucleus in two different forms, one extractable by nonionic detergents and the other resistant to such extraction. The latter is assumed to be tightly associated with nuclear structures and released at the time of initiation of replication. However, details of the mode of binding remain unclear. In the present study, we found that, in nonionic detergent-permeabilized nuclei, the association of human MCM (hMCM) proteins with them could be stabilized by the addition of ATP. The hMCMs bound to the nuclei in the presence of ATP were released by digestion with nucleases, suggesting that they are chromatin-associated. The nuclease-directed solubilization of the chromatin-bound hMCMs thus provided a means to analyze them as well as soluble hMCMs by co-immunoprecipitation. The results indicate that the six hMCM members exist as heterocomplexes, whether bound or unbound. We therefore propose that hMCM proteins may function in DNA replication as heterohexamers associated with chromatin and that ATP is possibly involved in the association. Nuclease digestion-immunoprecipitation techniques of the type described here should facilitate further elucidation of the mode of interaction between hMCMs and chromatin.  相似文献   

12.
p62 is a novel cellular protein which was initially identified as a phosphotyrosine-independent ligand of the SH2 domain of p56(lck). In the yeast two-hybrid system, p62 specifically interacted with ubiquitin in vivo. Furthermore, p62 bound to ubiquitin-conjugated Sepharose beads in vitro and was efficiently competed by soluble ubiquitin. The interaction was independent of ATP hydrolysis, and its dissociation did not require a reducing agent. Thus, p62 binds to ubiquitin noncovalently. Further analysis showed that the C-terminal 80 amino acids of p62 were indispensable for its interaction with ubiquitin. However, p62 has homology neither with ubiquitin C-terminal hydrolases nor with the S5a subunit of the 26 S proteasome complex, the only proteins known to bind to ubiquitin noncovalently. These results suggest that p62 belongs to a new class of ubiquitin-binding proteins and that p62 affects signal transduction at least partly through ubiquitination-mediated protein degradation.  相似文献   

13.
Transport of presecretory proteins into mammalian microsomes involves a microsomal protein which is sensitive to photoaffinity labeling with 8-azido-ATP. Typically, protein folding within the lumen of the endoplasmic reticulum of mammalian cells depends on ATP and the member of the Hsp70 protein family, BiP. Here we addressed the question of whether protein transport into and folding within microsomes are differentially affected by photoaffinity labeling of microsomes with 8-azido-ATP. Folding of heterodimeric luciferase to the native state was more azido-ATP-sensitive compared to transport of the precursors of the two subunits. Therefore, we conclude that the microsomal protein which is responsible for the ATP-dependence of protein folding in the endoplasmic reticulum is sensitive to photoaffinity labeling with 8-azido-ATP and that this microsomal protein is distinct from the microsomal ATP-binding protein which is involved in protein transport.  相似文献   

14.
Heat-shock proteins DnaK, DnaJ, and GrpE (KJE) from Escherichia coli constitute a three-component chaperone system that prevents aggregation of denatured proteins and assists the refolding of proteins in an ATP-dependent manner. We found that the rate of KJE-mediated refolding of heat- and chemically denatured proteins is decreased at high temperatures. The efficiency and reversibility of protein-folding arrest during and after heat shock depended on the stability of the complex between KJE and the denatured proteins. Whereas a thermostable protein was released and partially refolded during heat shock, a thermolabile protein remained bound to the chaperone. The apparent affinity of GrpE and DnaJ for DnaK was decreased at high temperatures, thereby decreasing futile consumption of ATP during folding arrest. The coupling of ATP hydrolysis and protein folding was restored after the stress. This strongly indicates that KJE chaperones are heat-regulated heat-shock proteins which can specifically arrest the folding of aggregation-prone proteins during stress and preferentially resume refolding under conditions that allow individual proteins to reach and maintain a stable native conformation.  相似文献   

15.
16.
MSH2 and MSH6 proteins exist as a stable complex, as do the MLH1 and PMS1 proteins. To study the mismatch binding properties of the MSH2-MSH6 complex and to examine its functional interaction with the MLH1-PMS1 complex, these protein complexes were purified to near homogeneity from overproducing yeast strains. As has been reported previously, the purified MSH2-MSH6 complex binds DNA substrates containing a G/T mismatch and insertion/deletion mismatches, but the binding affinity for the latter decreases as the size of the extrahelical loop increases. Addition of ATP or the nonhydrolyzable ATPgammaS reduces binding of the MSH2-MSH6 complex to the DNA substrates markedly. Here, we show that MSH2-MSH6 forms a ternary complex with MLH1-PMS1 on a mismatch containing DNA substrate. The formation of this ternary complex requires ATP, which can be substituted by ATPgammaS, suggesting that ATP binding alone is sufficient for ternary complex formation. Thus, it appears that ATP binding by the MSH2-MSH6 complex induces a conformation that is conducive for the interaction with MLH1-PMS1 complex, leading to the formation of the ternary complex.  相似文献   

17.
The oligomycin sensitivity conferring protein (OSCP) is an essential subunit of the mitochondrial ATP synthase (F0F1) long regarded as being directly involved in the energetic coupling of proton transport to ATP synthesis. To gain insight into the function of OSCP, mutations were made in a highly conserved central region of the subunit, and the recombinant proteins were studied using several biochemical assays. Rat liver OSCP was expressed to high levels in Escherichia coli, solubilized from inclusion bodies, renatured, and purified to homogeneity. The recombinant protein was able to reconstitute oligomycin-sensitive ATPase activity to inner membrane vesicles depleted of F1 and OSCP, and bound to F1 with a stoichiometry of 1:1. A novel fluorescence anisotropy assay was developed to study the affinity of binding of F1 to OSCP, providing a Kd value of 51 +/- 11 nM. Two highly conserved, charged residues (E91 and R94) which lie within the central region of OSCP were mutated, and the recombinant proteins (E91Q, R94Q, and R94A) were purified to homogeneity and judged by CD spectroscopy to have structures similar to that of the wild-type protein. Both R94 mutants demonstrated little or no binding to F1, while the E91Q bound in a manner identical to that of wild-type OSCP. Significantly, all three mutant proteins were able to reconstitute F1 with membranes and to confer oligomycin sensitivity to the same extent as wild-type OSCP. These results demonstrate that a single tight binding site exists on isolated rat liver F1 for OSCP, and implicate arginine 94 as playing a critical role in this site. In addition, these results indicate that this tight binding site is not required for conferral of oligomycin sensitivity to the reconstituted F0F1 complex.  相似文献   

18.
Prolyl 4-hydroxylase (P4-H) catalyses a vital post-translational modification in the biosynthesis of collagen. The enzyme consists of two distinct polypeptides forming an alpha 2 beta 2 tetramer (alpha = 64 kDa, beta = 60 kDa), the beta-subunit being identical to the multifunctional enzyme protein disulfide isomerase (PDI). By studying the cell-free synthesis of the rat alpha-subunit of P4-H we have shown that the alpha-subunit can be translocated, glycosylated and the signal peptide cleaved by dog pancreatic microsomal membranes to yield both singly and doubly glycosylated forms. When translations were carried out under conditions which prevent disulfide bond formation, the product synthesized formed aggregates which were associated with the immunoglobulin heavy chain binding protein (BiP). Translations carried out under conditions that promote disulfide bond formation yielded a product that was not associated with BiP but formed a complex with the endogenous beta-subunit (PDI). Complex formation was detected by co-precipitation of the newly synthesized alpha-subunit with antibodies raised against PDI, by sucrose gradient centrifugation and by chemical cross-linking. When microsomal vesicles were depleted of PDI, BiP and other soluble endoplasmic reticulum proteins, no complex formation was observed and the alpha-subunit aggregated even under conditions that promote disulfide bond formation. We have therefore demonstrated that the enzyme P4-H can be assembled at synthesis in a cell-free system and that the solubility of the alpha-subunit is dependent upon its association with PDI.  相似文献   

19.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green alga Chlamydomonas reinhardtii. A pure and active ATP synthase was obtained by means of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and PMSF [corrected]. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase alpha subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58-70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase beta subunit from C. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771-780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15-18 residues longer than in ATP synthase alpha subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.  相似文献   

20.
Most biological organisms rely upon a DNA polymerase holoenzyme for processive DNA replication. The bacteriophage T4 DNA polymerase holoenzyme is composed of the polymerase enzyme and a clamp protein (the 45 protein), which functions as a processivity factor by strengthening the interaction between DNA and the holoenzyme. The 45 protein must be loaded onto DNA by a clamp loader ATPase complex (the 44/62 complex). In this paper, the order of events leading to holoenzyme formation is investigated using a combination of rapid-quench and stopped-flow fluorescence spectroscopy kinetic methods. A rapid-quench strand displacement assay in which the order of holoenzyme component addition is varied provided data indicating that the rate-limiting step in holoenzyme assembly is associated with the clamp loading process. Pre-steady-state analysis of the clamp loader ATPase activity demonstrated that the four bound ATP molecules are hydrolyzed stepwise during the clamp loading process in groups of two. Clamp loading was examined with stopped-flow fluorescence spectroscopy from the perspective of the clamp itself, using a site-specific, fluorescently labeled 45 protein. A mechanism for T4 DNA polymerase holoenzyme assembly is proposed in which the 45 protein interacts with the 44/62 complex leading to the hydrolysis of 2 equiv of ATP, and upon contacting DNA, the remaining two ATP molecules bound to the 44/62 complex are hydrolyzed. Once all four ATP molecules are hydrolyzed, the 45 protein is poised on DNA for association with the polymerase to form the holoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号