首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The iron rust phases formed on low alloy steels containing different quantities of Cr element have been characterized using EPMA,Raman spectroscopy,TEM,optical microscopy etc.The ion selective properties of synthesized rust films with the same phase constituent as the atmospheric corrosion products were investigated using self-made apparatus.The results showed that corrosion loss of steels exposed in marine atmosphere decreased rapidly as the Cr content of the steel was increased.Cr-containing steels were covered by a uniform compacted rust layer composed of fing particles with an average diameter of several nanometers.Inner rust layer of Cr-containing steel (2 mass fraction) was composed of α-CrxFe1-xOOH,with Cr content of about 5 mass fraction,Such rust layer showed cation selective property,and could depress the penetration of cl^- to contact substrate steel directly.  相似文献   

2.
采用强流脉冲电子束(HCPEB)对含稀土的AM50镁合金进行表面改性处理。利用金相显微镜、扫描电镜和显微硬度计等对试样的截面和表面进行观察,研究了强流脉冲电子束表面改性对其摩擦磨损性能及耐腐蚀性能的影响。结果表明:处理层的截面组织经脉冲电子柬轰击后发生了很大的变化;从表面形貌可以看出存在许多弥散分布的微米尺度的熔坑;显微硬度测试结果表明,处理层的硬度比基体的硬度明显提高;耐磨性及耐腐蚀性能均较基体提高,同时在不同处理参数下耐磨性及耐腐蚀性能有所不同。  相似文献   

3.
为了更好地控制镍锰合金的电铸过程、获得质量较好的电铸层,利用冲液式电铸沉积单元进行了镍和镍锰合金的脉冲电铸对比试验.试验发现,镍锰合金电铸时阳极上会产生疏松的黑色附着层.对提取的黑色粉末用扫描电镜进行能谱分析可知,该黑色附着层中含有较多的Mn和O,较少的Ni和很少的S.经化学分析和电化学理论分析可知,黑色附着层的成分为阳极上Mn2 发生氧化反应所形成的MnO2和阳极钝化所形成的少量Ni2O3.采取正确的过滤和沉淀措施后阳极黑色附着层对镍锰合金电铸过程不会产生明显的影响.  相似文献   

4.
钛合金表面阳极微弧等离子体渗硼层的研究   总被引:1,自引:0,他引:1  
缪倩倩  陈海燕  顾伟  蒋永锋  宋亓宁 《材料导报》2018,32(18):3161-3165
采用阳极微弧等离子体技术研究了钛合金表面渗硼层的微观组织和性能。通过光学显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)表征分析了渗硼层的表面和截面的微观组织、形貌、相结构、渗层元素分布。借助摩擦磨损试验机测试了渗硼层的耐磨性,运用电化学工作站对渗硼后的TC4材料进行了耐腐蚀性测试。结果表明,钛合金表面阳极微弧等离子体渗硼技术制备的渗硼层连续致密。渗硼层主要由金属间化合物TiB2和TiB组成,其与氧化层共同作用,能显著提高钛合金表面的耐磨性。渗硼后的TC4钛合金耐腐蚀性较基体有所降低。表面阳极微弧等离子体技术是一种新型的钛合金表面改性方法。  相似文献   

5.
钛合金微弧氧化膜具有优良的综合性能,但过去的研究多针对Ti6Al4V及医用纯钛,且电解液常用硅酸盐和磷酸二氢盐体系,不够全面、系统。为此,以磷酸盐溶液体系在船用TA2表面制备了陶瓷微弧涂层。采用SEM、光学显微镜、X射线衍射仪和显微硬度计对陶瓷膜的表面形貌、截面形貌、氧化层厚度、相结构和显微硬度进行了观察测试,用电子万能材料试验机和数字万用表测定了膜层的结合强度和绝缘性,并用盐雾试验机考察了涂层的耐蚀性。结果表明:随氧化时间的延长,膜层厚度不断增加,氧化60min后膜层厚度可达到20μm以上;陶瓷层主要由金红石TiO2相和锐钛矿TiO2相构成,膜基结合强度达到30MPa以上,膜层绝缘性和耐蚀性良好。  相似文献   

6.
本文观察了锈层/耐候钢界面形貌以及锈层致密情况的变化,建立了锈层/基体界面模型,通过Ansys5.3有限元程序模拟计算,分析了锈层中应力分布情况.在低合金钢大气腐蚀过程中,表面在电化学电位低的地方形成腐蚀坑;在腐蚀坑腰部锈层中存在着应力集中.此外锈层首先开裂,加速此处基体腐蚀,加大了腐蚀坑曲率半径,有利于锈层/基体界面平直化,减弱应力集中程度.促进致密锈层形成.  相似文献   

7.
During low pressure carburizing a carbon layer precipitates on the surface of steel parts. The structure of the carbon layer was tested by means of optical and electron microscopy and Raman spectroscopy as well. It was found out that the carbon layer is composed of fine-crystalline graphite. A sample was carburized (boost step), and was subsequently observed with an optical microscope. The dominant shade of the previously existing austenite grains was gray with few brighter areas (observation with a scanning microscope showed that these areas were darker). Within the gray areas the size of graphite crystallites was 7-20 nm, and within the brighter areas 1-7 nm. The diffusion step led to a change in the grain shade and to a decrease in the size of graphite crystallites. Gray-shaded grains were made of a mixture of gray and dark areas. The areas of homogenous brightness contained graphite made of crystallites of size 1-2 nm, and the areas where the gray shade was not homogenous contained grains of size up to 4 nm.  相似文献   

8.
含硅合金熔体对TiAl基合金表面改性的研究   总被引:2,自引:0,他引:2  
使用含硅合金熔体对TiAl基合金进行了表面渗硅处理,渗硅处理温度范围是:913-1053K,实施发现,TiAl基合金与Al-Si熔体之间发生了界面反应,界面生成以Si,Ti,Al三元素为主的灰白色基体和条状,小块状黑色相。表面处理后样品经1173K/100h高温氧化后,表层形成了Al2O3,SiO2等致密的氧化膜,并保留有稳定的Si-Ti-Al相,因而改善了表面氧化层结构,大大增强了TiAl基合金的高温抗氧化能力。  相似文献   

9.
目的 研究7B50−T7751铝合金在不同喷丸成形压力下力学性能的变化规律,探究喷丸成形压力对材料表面形貌、疲劳寿命及静力性能的影响。方法 在不同的喷丸成形压力(0.42、0.50 MPa)下对7B50−T7751铝合金进行处理,分析材料的表面形貌。在此基础上,通过细节额定疲劳基准值和截止值进行计算,并进行压缩试验,结合铝合金材料在喷丸前后应变层的位错密度和形态,分析喷丸成形压力对合金材料疲劳寿命和静力性能的影响。结果 与未喷丸试件相比,在0.42 MPa的成形压力下,合金材料的疲劳寿命和静力性能均有所提高。喷丸成形之后,材料表层引入了一定深度的残余压应力层,形成位错密度较大的加工硬化组织,阻碍裂纹扩展,宏观上提高了材料的强度。在0.50 MPa的成形压力下,材料表面更加粗糙,裂纹易在晶粒连接薄弱处萌生,导致合金材料的疲劳寿命有所降低。结论 随着喷丸成形压力的增大,合金材料的疲劳寿命先增大后减小,抗压强度有所增大。在0.50 MPa的成形压力下,部分裂纹易于在弹坑边缘萌生,在一定程度上会降低合金材料的疲劳强度。  相似文献   

10.
某发动机高压涡轮叶片为镍基单晶合金叶片,在室温下进行振动疲劳试验后发现叶片开裂,通过宏观观察、金相检验和扫描电镜分析等方法对叶片开裂的原因进行了分析。结果表明:进气边叶根和榫头伸根的开裂形式均为疲劳开裂;进气边叶根气膜孔内壁存在多处小缺口及榫头伸根亚表面存在疏松缺陷,这些缺陷部位容易形成裂纹源,促进了裂纹的萌生,裂纹扩展后最终导致开裂失效。  相似文献   

11.
Deposition of Bioactive Layer on NiTi Alloy by Chemical Treatment   总被引:3,自引:0,他引:3  
A simple chemical method was developed for inducing bioactivity on NiTi alloys(50 at.pct by Ni/Ti).A layer of calcium phosphate was deposited on the surface to improve biocompatibility of thealloy.NiTi alloys were first etched in HNO3 aqueous solution,and then treated with boiling diluted NaOH solution.A rough surface was created and a thin TiO2 layer was formed on the surface.Pre-calcification was then introduced by immersing the treated NiTi alloys in supersaturated Na2HPO4 solution and supersaturated Ca(OH)2 solution in turn before calcification in simulated body fluid (SBF).A dense and uniform bonelike calcium phosphate(Ca-P) bioactive layer was formed on the surfaces of the specimen,which would improve their biocompatibility.Morphology and element analysis on NiTi surfaces during the treatments were investigated in detail by means of environment scanning electron microscopy(ESEM),energy dispersion X-ray spectroscopy(EDXS),and X-ray diffraction (XPD).  相似文献   

12.
涂覆法观测KH2PO4晶体Z切片薄表面层形成和生长特性   总被引:1,自引:1,他引:0  
邓伟  李明伟  王鹏飞  胡志涛 《材料导报》2016,30(24):108-112
提出一种实验研究薄表面层形成和生长的涂覆法。利用该方法,以KH_2PO_4(KDP)晶体Z切片为载体,探究晶体的某些部位,比如(001)面、棱边、柱面在薄表面层形成以及生长过程中所起的作用。结果表明,当Z切片的(001)面上的棱边被覆盖,会首先以小晶锥的形式在(001)面形成新棱边,然后自新棱边沿(101)面切线方向出现薄表面层生长;当整个(001)面被覆盖,柱面生长一定时间并形成新棱边,之后也会出现薄表面层生长;当(001)面被涂覆分割,各分割部分能在各自的新棱边形成后以薄表面层方式形成独立的锥体,而在锥体间的棱边恢复后,独立锥体相应锥面能实现连接。可见,棱边是薄表面层形成的先决条件。对各种涂覆处理的Z切片通过光学显微镜实时观测,发现棱边在薄表面层形成中起关键作用,而柱面能提供台阶,在薄表面层生长中起重要作用;同时,得到了不同涂覆处理方式下薄表面层切向生长速度和动力学系数。  相似文献   

13.
High-frequency induction brazing of cemented carbide (WC–Co, K20) and alloy steel (AISI 4140) using Cu–Zn base filler metal was carried out. The relationship between microstructure and performance of the welding joint was investigated. It was found that the filler metal exhibited excellent wettability and metallurgical bond in the welding surface. As the heating rate reduced, welding joint appeared smooth without any visible crack. In the diffusion layer, some intermetallic compounds were observed, which were produced by the reaction of diffusion atoms. The microhardness in the middle of the welding seam was 168 Hv and it increased gradually when approaching to the edge of welding seam. With brazing temperature increased or heating rate decreased, the shear strength of welding joint increased first and then decreased. The machining test clearly revealed that the cutting temperature and the flank wear increased with the cutting speed rose. The welding joint had good shear strength when the temperature was below 500°C and the shear strength decreased seriously when the temperature exceeded 500°C.  相似文献   

14.
针对铝合金表面极易氧化生成结构疏松、耐腐蚀性差的氧化膜问题,利用阳极氧化法对2A96铝合金表面进行防腐蚀处理。通过改变阳极氧化实验中的氧化电压,在2A96铝合金表面制备不同的阳极氧化膜;利用金相显微镜观察各个阳极氧化膜的表面形貌、测厚仪测量其厚度、显微硬度计测定其硬度、点滴实验获取其点滴时间、电化学工作站获取其极化曲线和交流阻抗谱,进而对阳极氧化膜的耐腐蚀性进行研究。结果表明,在所测电压范围(8~16 V)内,随着电压的升高,阳极氧化膜的厚度、硬度、点滴时间也逐渐增加,耐腐蚀性能也随之增强。2A96铝合金经过表面阳极化处理后,其性能显著提高。  相似文献   

15.
Under the cold-chamber high pressure die casting (HPDC) process, samples were produced with AM60B magnesium alloy to investigate the microstructure characteristics of the eutectics, especially focusing on the constitution, morphology and distribution of the eutectics over cross section of the castings. Attentions were also paid to study the effect of heat treatment on the eutectics in the die castings. Based on experimental analysis using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), it was determined that fully divorced eutectics consisting of α-Mg and β-Mg17Al12 appeared at the grain boundary of the primary α-Mg in the as-cast microstructure. Islands and networks of β-Mg17Al12 phase were observed in the central region of the castings, while the β-Mg17Al12 phase revealed a more dispersed and granular morphology on the surface layer. The two phases ratio β/α in the central region of the castings was approximately 10%, which was higher than that on the surface layer. Besides, the defect bands contained a higher percentage of the eutectics than the adjacent regions. After aging treatment (T6), only α-Mg phase was detected by XRD in the AM60B magnesium alloy, though a small amount of precipitated β-Mg17Al12 phase was observed at the grain boundary. In contrast to the microstructure of die cast AZ91D magnesium alloy under the same T6 heat treatment, no discontinuous precipitation of the β-Mg17Al12 phase was observed in AM60B magnesium alloy die castings.  相似文献   

16.
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.  相似文献   

17.
Disc milling is used in manufacturing, especially for difficult-to-machine material such as titanium alloy, because of its strong force and high machining efficiency. However, research on the cutting mechanism of the disc-milling technique is still lacking in the literature. In the present study, first, a disc-milling grooving experiment was designed and carried out to test the milling temperature correlated to the milling force for titanium alloy samples. After machining, residual stress, microstructure and microhardness were investigated. Residual compressive stress was found on the milling surface, which changes to tensile stress gradually with the increase of depth. The impact of cutting factors on residual stress was also analyzed numerically and the results showed that with the increase of speed of the mainshaft, the residual stress reduced gradually. For the factors of depth of cut and feed speed, increasing them had the opposite effects on residual stress. Next, the microstructures of lattice tensile deformation and lattice fracture were observed under different cutting conditions. The metallographic structure changed on increasing the milling temperature, progressing from an initial equiaxed microstructure to an α + β duplex microstructure, and then formed a lamellar microstructure later. The microhardness in the plastic deformation zone was also taken into account, which showed that the hardness increased under the combined effect of the milling temperature and force.  相似文献   

18.
《Materials Letters》2007,61(19-20):4050-4053
In order to clarify some features of atmospheric corrosion mechanisms, mild steel and two kinds of low alloy steels (1%Ni and 4%Ni-bearing steel) were investigated using 0.3%NaCl solution in wet/dry cyclic corrosion tests to simulate the coastal environment. The cross-section of rusted steels was analyzed by ESEM after 100 wet/dry cycles. The ion-selective permeability of rust layers on steels was investigated by measuring the distribution of Cl and Na element in the rust layer using EDXA. The results showed that the addition of Ni improved the ion-selective property: the rust layer of mild steel was anion-selective; the rust layer of Ni-bearing steel mainly was anion-selective, and its anion-selective property decreased with increasing content of Ni. The cation-selective property of the rust layer of Ni-bearing steel emerged when the content of Ni exceeded 4%.  相似文献   

19.
We focused on the surface reinforcement of ligth weight casting alloys with Ni-AI intermetallic compounds by in-situ combustion reaction to improve the surface properties of non-ferrous casting components.In our previous works,green compact of elemental Ni and Al powders were reacted to form Ni-3Al intermetallic compound by SHS (Self-propagating high temperature synthesis) reaction with the heat of molten Al alloy and simultaneously bonded with Al casting alloy.But some defects such as tiny cracks and porosities were remained in the reacted compact.So we applied pressure to prevent thermal cracks and fill up the pores with liquid Al alloy by squeeze casting process.The compressed Al alloy bonded with the Ni-3Al intermetallic compound was sectioned and observed by optical microscopy and scanning electron microscopy (SEM).The stoichiometric compositions of the intermetallics formed around the bonded interface and in the reacted compact were identified by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). Si rich layer was formed on the Al alloy side near the bonded interface by the sequential solidification of Al alloy.The porosities observed in the reacted Ni-3Al compact were filled up with the liquid AI alloy.The Si particles from the molten Al alloy were detected in the pores of reacted Ni-3Al intermetallic compact.The Al casting alloy and Ni-3Al intermetallic compound were joined very soundly by applying pressure to the liquid Al alloy.  相似文献   

20.
NiTi合金表面化学沉积羟基磷灰石生物活性层机理的研究   总被引:8,自引:1,他引:7  
用化学方法对NiTi合金表面进行处理,用SEM观察了表面形貌,测定了表面Ca/P层的成分。用热力学方法对可能获得表面结构进行了推算,表明表面结构可能为羟基磷灰石。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号