共查询到19条相似文献,搜索用时 62 毫秒
1.
未知环境下,群机器人无法预先获取多目标搜索的环境信息,仅可局部感知与局部通信.本文针对避障效率与搜索效率的缺陷提出边界扫描的避障策略和目标位置估计的粒子群算法,边界扫描的避障策略(BSOA)将障碍物简化成连续障碍物与非连续障碍物两种情况,并根据情况向特定边界运动;目标位置估计的粒子群算法(TPEPSO)则利用获取的目标信号估计目标位置,结合粒子群算法到达目标附近,从而实现目标搜索.提出的方法与基于简化虚拟受力分析模型的循障避碰方法(SVF)及扩展粒子群算法(EPSO)、自适应机器人蝙蝠算法(ARBA)仿真比较,搜索效率提高5.72%~21.58%,总能耗减少4.30%~19.11%. 相似文献
2.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
3.
4.
针对动态多目标问题求解,提出一种基于分解的预测型动态多目标粒子群优化算法.首先借助分解思想,将目标问题划分为多个不同的子问题,当问题动态变化时,选择对应于不同子问题的优化个体检测环境变化程度,以提高算法对不同动态问题的适应与响应能力;然后,设计一种群体预测策略,通过将目标空间中相同收敛方向上不同时刻的个体位置转换为时间序列,引入时间序列预测方法预测下一刻位置,从而提高预测种群的多样性和有效性,进而有效减少算法在问题变化后的收敛时间;最后,为避免问题发生变化后个体与子问题不匹配,设计一种再匹配策略,以提高预测策略的准确性.实验结果表明,在6个标准动态多目标测试问题上,与2个动态多目标优化算法进行比较,所提出算法在收敛性、分布性与稳定性上均具有显著优势. 相似文献
5.
为了进行群机器人协同作业,提出目标搜索中导航类集体行为学习策略.在使用具有闭环调节功能的动态任务分工方法进行任务分配、自组织地生成多个子群后,在子群中引入基于社会学习微粒群算法的机器人行为学习策略.在子群框架内,机器人各自独立地以感知的共同意向目标信号强度为标准对所有成员排序,将感知优于自己的机器人作为行为示范者.然后在搜索空间各维度上分别随机选择一个行为示范者,学习其在相应维度上的位置坐标,经构造得到搜索空间中自己的学习行为向量,由此决策自身的运动行为.仿真结果表明,在不需要学习全局社会经验的前提下,机器人能针对所属子群的共同意向目标进行协同作业,提高搜索效率. 相似文献
6.
7.
8.
提出了一种基于密度熵的多目标粒子群算法(EMOPSO)。采用一个外部集保存所发现的Pareto最优解(精英),并将外部集作为粒子的全局极值。为保证种群的多样性,当精英大于外部集的大小时采用一种基于密度熵的策略进行分布度保持,从而使所得到的解集保持良好的分布性。最后与经典的多目标进化算法(MOEAs)进行了对比实验,实验结果表明了该算法的有效性。 相似文献
9.
10.
针对多目标粒子群优化算法全局最优位置〖BP(〗(gbest)〖BP)〗选取存在的缺陷和局部搜索能力弱的缺点,提出一种基于全局最优位置自适应选取与局部搜索的多目标粒子群优化算法MOPSO-GL。首先对Sigma法进行改进,引入拥挤距离机制,不再是粒子从档案中选择全局最优位置,而是档案成员从种群中选择合适的被引导粒子,引导种群均匀快速地向Pareto前沿飞行,提高了Pareto解的收敛性和多样性;其次当种群寻优能力减弱时,引入基于Skew Tent映射的变尺度全面搜索混沌优化策略对外部档案进行局部搜索,以提高算法的收敛性;最后通过与其他多目标优化算法的比较,结果表明MOPSO-GL具有更好的收敛性和分布性。 相似文献
11.
刘慧慧 《计算机技术与发展》2015,(1)
为了解决多目标优化过程中各个解之间存在的资源争夺、冲突,算法由于趋同性而带来的早熟无法收敛等缺点,文中提出了一种多子种群协同优化粒子群算法。算法分别采用不同的种群优化不同的目标,并且在算法中引入外部档案和精英学习策略,使得算法能够得到更多的外部档案的解供选择,精英学习策略是为了使算法的分布性和收敛性更好。最后将算法应用到多目标测试函数中,通过实验验证了改进后的算法的收敛性和分布性都比经典多目标算法NSGA-II要好。 相似文献
12.
基于双极偏好控制的多目标粒子群优化算法 总被引:2,自引:0,他引:2
考虑双极偏好信息对粒子群的控制作用,提出一种使用双极偏好——正偏好和负偏好引导粒子群向
Pareto 前沿偏好区域进化的方法.根据TOPSIS 决策法思想,将外部种群粒子与正负偏好点的相对贴近度排序作为
外部种群管理和全局最优解更新策略;根据贴近度值确定解集的分布度;选取6 种不同类型的多目标测试函数进行
算法模拟,从世代距离、空间测度和超体积测度3 个指标与基于单极偏好的多目标粒子算法进行性能比较.结果显
示,基于双极偏好控制的多目标粒子群算法的收敛性和综合性能更优秀. 相似文献
13.
14.
一种基于粒子群优化算法的组合预测模型 总被引:1,自引:0,他引:1
本文首先分析了若干传统的预测方法,提出了一种组合预测模型,在该模型中利用加权系数对各种预测方法进行组合,集成不同来源的预测结果,从不同的侧面反映整个预测过程,力图使预测结果更加精确。在各种预测方法加权系数的确定上,利用PSO快速全局优化的特点,可以减少试算的盲目性,提高模型预测的准确性。 相似文献
15.
16.
为提高混沌优化搜索结果的精度,在以粒子群算法进行全局搜索的基础上,根据全局搜索结果利用混沌优化进行局部搜索,实现在全局范围上搜索最优值.分析局部混沌搜索方法,设计基于混沌局部搜索的粒子群算法的流程,利用混沌优化进行粒子群局部搜索以跳出局部最优搜索区域,避免陷入局部极小值和实现在全局范围上搜索目标函数的最优值.以RMSE... 相似文献
17.
企业对产品进行创新改进,带来装配线上装配任务的变化,从而造成已平衡装配线的失衡。针对上述变化给企业混流装配线带来的影响进行了研究,以最小化生产节拍,工作站间的负荷,和工人完成新装配任务的调整成本为优化目标去建立混装线再平衡的数学模型。并设计了一种新的多目标粒子群算法求解模型,算法中引入各粒子动态密集距离去筛选外部文档的非劣解和指导全局最优值的更新,在控制解的容量同时保持Pareto解集分布均匀。此外,引入变异机制,提高了种群的全局搜索能力。最后,结合具体实例的验证表明,该改进多目标粒子群算法能有效地解决混装线再平衡问题。 相似文献
18.