首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
软土地层具有高灵敏度、高压缩性和承载能力低的特点,在外荷载和震动的作用下容易产生变形和不均匀沉降.依托珠海市杧洲隧道工作井基坑工程,通过现场监测和数值模拟分析地下连续墙墙体水平位移、地表沉降和支撑轴力,研究软土深基坑开挖变形发展规律及被动区加固的影响.结果表明,墙体水平位移曲线图呈现“勺型”,最大值出现在1.4倍基坑开挖深度左右的位置,被动区加固使墙体水平位移最大值降低33%;地表沉降呈现“沉降槽”曲线特征,最大值出现在距离基坑边缘0.3倍开挖深度的位置,被动区加固使地表沉降最大值小于开挖深度的0.1%;开挖土体使支撑轴力迅速增大,下一层支撑的设置可以有效降低上一道支撑的轴力增长,被动区加固使支撑轴力最大值降低25%;被动区加固是软土深基坑控制变形的有效措施.研究结果可为软土深基坑施工和监测提供参考.  相似文献   

2.
以降低城市地铁车站深基坑开挖对周围环境影响,保障地铁工程施工安全为目的,该研究依托西安市地铁二号线运动公园车站深基坑施工,对施工过程中钢支撑轴力、桩身水平位移、基坑周围地表沉降进行了现场监测,分析了工程开挖前后一段时期内基坑变形规律.研究结果表明:围护桩变形的最大部位在距桩顶2/3的基坑开挖深度处;距基坑长边10m左右地表变形随着基坑开挖深度增加,基坑开挖初期变形速率较大,随着开挖深度的增加,速率逐渐减小;钢支撑能够有效地限制围护桩的水平位移,随着基坑开挖深度和钢支撑的增加,钢支撑的轴力随之增大,最后随时间内力趋于稳定.  相似文献   

3.
以绍兴地铁2号线车站基坑工程为实例,通过对地连墙水平位移、支撑轴力、地表沉降现场监测数据的分析,得到绍兴地区基坑工程围护结构的相关变形规律并给出相应的控制措施。结果表明:墙体水平位移基本呈内凸型模式,最大侧移在40~60 mm之间,基坑地表沉降呈凹槽形模式,其地表沉降主要集中在50~80 mm左右。地连墙最大侧移δhm在(0.05%,0.37%)H范围内,平均值为0.21%H;地下连续墙最大侧移点埋深δhm主要落于(0.69%,0.94%)H范围内;墙后最大地表沉降δhm范围在(0.01%,0.5%)H内,平均值为0.26%H。  相似文献   

4.
为确定西安地铁车站深基坑的变形特性,收集了18个地铁车站深基坑变形的实测数据,根据实测数据,对深基坑开挖引起的支护结构侧向位移和地表沉降的变形规律进行了统计研究,并将研究结果与其他地区的基坑工程进行比较。结果表明:基坑支护结构侧移曲线形状为"鼓胀形",最大侧移点深度均位于开挖面以上;最大侧移值在0.03%H~0.12%H(H为开挖深度)之间,其值随插入比的增大而减小;地表沉降曲线呈"凹槽形",最大地表沉降位置出现在0.51H处;最大地表沉降约为0.06%H,增大插入比对其值的影响并不显著;最大地表沉降随着最大侧移的增大而增大,且其比值约等于1.10。该研究成果可为西安市类似深基坑工程的变形预测、设计和施工提供参考。  相似文献   

5.
临近地铁隧道的软土深基坑开挖时,若不能严格控制基坑施工效应,既有盾构隧道易出现损坏.在杭州市萧山区彩虹大道(工人路-市心路)B标段深基坑工程开挖过程中,对基坑下穿地铁隧道受影响范围内的隧道位移、收敛等进行监测,同时开展基坑地下连续墙与土体深层水平位移、地下水位、支撑轴力、地表和周边建筑物沉降、基坑围护墙顶与立柱沉降的监测工作.数据分析结果表明:基坑开挖对下穿隧道的影响以竖向位移为主,对水平位移和收敛变形影响较小;地下连续墙深层墙体水平位移与深层土体水平位移有明显的相关性,可用墙体水平位移代替土体水平位移;基坑地下水位的变化趋势与周边建筑物沉降变化趋势相同,开挖期间需密切关注地下水位的变化;基坑隆起是导致支撑轴力出现负值的主要原因,当支撑轴力出现负值时应高度关注坑底隆起和地表下陷.  相似文献   

6.
深基坑围护混合支撑体系内力与变形监测分析   总被引:1,自引:1,他引:0  
以混合支撑体系内力与变形的变化规律为研究目标,以某明挖隧道深基坑为例,采用现场监测方法,对基坑开挖引起的围护结构位移、锚索应力、支撑轴力的变化规律及施工中遇到的一些问题进行了分析.试验表明:开挖至基底标高时,桩顶和桩身位移达到最大值,桩身最大位移发生在基坑中上部6 m处;随着基坑的开挖,锚索应力呈波浪上升状变化,温度和施工荷载是造成波浪状变化的原因;围护结构位移、锚索应力、支撑轴力与开挖深度具有同步性.监测数据整体稳定,基坑采用的混合支撑方案安全可靠.  相似文献   

7.
针对北京地铁17号线某盾构竖井基坑工程开挖深度大、作业空间小的难点,围护结构首道支撑位置采用新型装配式钢管混凝土(简称P-CFST)支撑结构,扩大了支撑间距,便于基坑开挖、出土和支撑架设作业. 利用ABAQUS软件建立三维有限元模型,开展基坑开挖全过程数值模拟. 在工程实施过程中,对支撑轴力、围护桩水平位移、桩顶水平位移和地表沉降进行系统监测,保证了P-CFST支撑和钢支撑组合支护下的基坑施工安全,研究盾构竖井围护结构变形的空间效应、地表沉降曲面形态、不同位置处的支撑轴力关系等. 由模拟和监测结果的分析表明:围护桩同一深度上变形呈现抛物线形状或“盆形”,空间效应对盾构井围护结构变形的影响主要发生在距离基坑阴角小于8 m的范围内;基坑附近地表沉降等值线形状经过“圆弧形”-“陀螺形”-“梯形”变化,最大地表沉降位置经历由近及远、再向基坑靠近的移动过程;首道P-CFST支撑轴力对地层开挖、支撑架设等工况的影响更加敏感,大于架设深度更大的2、4道钢支撑轴力. 盾构竖井基坑工程内撑式围护结构首道支撑选用高刚度、高承载力的P-CFST内支撑,扩大了设计间距,围护结构和周围地层变形得到了有效控制.  相似文献   

8.
以上海软土地区某逆作法地铁车站深基坑项目为工程背景,通过分析现场监测数据,研究逆作法深基坑的变形性状及对周围环境的影响.研究结果发现:该基坑变形表现出显著的空间效应:中间标准段围护结构最大侧移的统计范围为(0.25%~0.45%)H,明显大于端头井的(0.10%~0.25%)H,中间标准段立柱隆起的上限为0.26%H,明显大于端头井的上限0.18%H,中间标准段开挖引起的管线沉降明显大于端头井开挖引起的管线沉降;既有地下结构对基坑变形有明显的遮拦效应,导致中间标准段西侧的围护结构侧向变形较小;基坑开挖导致邻近浅基础建筑物发生较大的沉降,甚至破坏建筑物的结构整体性,引发墙体开裂;受软土流变特性的影响,浅基础建筑物和地下管线都产生一定程度的工后沉降.  相似文献   

9.
为研究莞惠城际轨道基坑施工方案的可靠性,结合莞惠城际轨道工程深基坑开挖的具体实践,基于现场实测数据,对深基坑开挖过程中桩体水平位移、桩顶水平位移、地表沉降、支撑轴力、地下水位变化规律进行了全面深入的研究.结果表明:降水对地表沉降有较大影响,施工中应予以重视;钢支撑的预应力对基坑的变形特别是围护结构侧向位移控制有较大影响;钢支撑轴力远小于设计值,设计方案可以进一步优化;优化后的支护方案较好地限制了基坑变形.  相似文献   

10.
结合广州某软土深基坑工程实例,建立了地下连续墙、钢筋混凝土内支撑和土层的二维有限元模型,对深基坑开挖过程进行数值模拟.研究结果表明:随着基坑开挖深度的增大,围护结构水平位移增大,最大水平位移的位置由桩顶往下移,而且围护桩水平变形曲线发展形态呈现出向坑内凸的“大肚形”,与实测结果基本一致.支撑结构对减小基坑围护结构的变形起着重要作用,无支撑结构的桩体水平位移最大值达到24.6 mm;土体弹性模量及围护结构刚度对基坑围护结构变形影响较大,桩体水平位移随着土体弹性模量及围护结构刚度的增大而减小.  相似文献   

11.
针对某市南北快速干线隧道17. 8 m深基坑工程,采用同济启明星Qimstar~?基坑支护结构软件,对基坑开挖过程中围护桩的受力情况进行模拟计算,并用测斜仪对围护桩的水平位移进行现场实时监测,研究桩体受力特点及变形规律.结果表明:模拟结果与监测结果在数值上比较接近,且变化趋势一致;桩身最大水平位移与基坑土层的开挖深度密切相关,随开挖深度的增加而发生非线性增大;受基坑时空效应的影响,桩体最大变形部位不断下移,桩身形状也由最初的前倾形曲线逐步向弓形曲线发展,最终在距基坑设计开挖总深度的2/3处达到11. 25 mm的最大值;在基坑底板浇筑完成后,围护桩变形趋于稳定.  相似文献   

12.
深基坑地连墙支护体系工程变形与理论设计值之间存在较大差异且难于动态调整. 采用支护结构动态调整方法解决此问题,提出动态调整方法,并运用经实测数据验证后的数值模型研究深基坑地连墙支护体系协调变形规律,得出不同调整方案下支护体系受力、变形规律及协调变形曲线(即轴力-位移关系曲线). 基于弹性地基梁理论,给出反映支护结构动态调节思想的适用于多层支撑结构的支护体系力学解析模型. 研究发现,在工程中,更严格的位移控制不一定能够带来更安全的结果,应该寻找合理受力平衡点并将支护体系受力参数控制在最优区间内. 研究得到本工程支护体系受力参数最优区间,最大轴力与钢支撑屈服强度比值为0.32~0.38,墙体位移与开挖深度比值为0.80‰~0.92‰.  相似文献   

13.
以南京地铁虹桥站深基坑工程为依托,结合土体开挖过程中基坑各项监控量测数据,利用FLAC 3D软件建立车站深基坑的三维数值仿真模型,对基坑的开挖和支护动态施工过程进行模拟,对比研究数值仿真的变形计算结果与监控量测数据,研究结果表明:(1)地连墙水平位移在墙身范围内,大致呈"弓"形,随着基坑的开挖而呈非线性增加,位移峰值出现在基坑开挖工作面附近。(2)地表土体受基坑开挖的影响范围主要在基坑边1H(H为基坑深度)范围内,不同工况下沉降曲线大致呈抛物线形,且沉降峰值呈线性增加,峰值沉降发生在0. 5H附近;在同一工况条件下,随着时间的推移,不同距离位置处的土体位移呈现不断重分布的过程,但整体曲线仍呈"凹"形。(3)基坑隆起量也与基坑开挖过程有关,土体的最大隆起量发生在基坑中轴线附近,随着开挖深度的增加隆起量呈非线性增加。(4)支撑的架设对围护结构的变形和土体的沉降控制能起到良好的正面作用,延迟支撑架设对变形的发展极为不利。  相似文献   

14.
明挖地铁车站围护结构内支撑力学参数研究   总被引:3,自引:0,他引:3  
以北京某地铁车站深基坑工程为研究对象,结合现场监测数据,分析基坑开挖过程中围护结构的水平位移随开挖深度和时间的变化规律,同时,运用FLAC3D进行有限差分法数值模拟,对比分析围护结构水平位移的监测值与模拟值,并对钢支撑在不同预加轴力及刚度作用下的桩体水平位移及弯矩进行量化分析.主要结论有:1)实测值和模拟值的桩体水平位移曲线变化趋势大体相似,都表现出两头小、中间大的括弧状,最大变形都发生在基坑侧壁中部上下;2)预加轴力的大小对桩体位移变化有一定影响,因此在基坑施工中应合理地选择钢支撑的预加轴力来限制围护结构变形;3)在基坑施工中,对变形要求严格的工程,可通过加大钢支撑的刚度来减小桩体的水平位移.  相似文献   

15.
针对基坑计算中存在的问题,分析工程桩的存在时基坑的变形性状,并与不考虑工程桩的存在时的计算结果作比较.考虑到用三维方法计算量非常大,笔者采用平面有限元法.采用轴向刚度等效的方法模拟基坑内存在的工程桩,有限元分析表明,工程桩的存在对基坑变形和支护结构内力产生影响.对深基坑工程中工程桩对基坑变形、周围土体应力场和位移场的影响做较为深入的对比分析.  相似文献   

16.
软土地区某深基坑变形规律有限元模拟研究   总被引:1,自引:0,他引:1  
以深圳市某地下车站深基坑工程为依托,运用有限元软件PLAXIS对围护结构的深层水平位移、坑底土体隆起、周围土体沉降和支撑轴力变化进行了研究,得出:1)墙体水平位移呈现出"两头小、中间大"的凸肚子形状;2)在开挖深度较大时,坑底将发生塑性隆起,呈现出"两边大、中间小"的形式,坑外土体沉降呈现出抛物线分布形式;3)开挖卸荷引起的坑外主动土压力主要由临近开挖面的支撑反力来平衡,新支撑的架设会导致各道支撑轴力进行重分布。研究结果可对类似工程的信息化施工提供参考。  相似文献   

17.
超大逆作基坑地下连续墙变形分析   总被引:2,自引:2,他引:0  
本文基于天津滨海新区某深基坑施工监测资料,对超大逆作基坑开挖过程中地下连续墙水平、竖向位移进行了分析。认识到,逆作基坑地连墙水平变形随开挖深度变化近似呈“弓形”分布,水平位移最大值出现的位置约为基坑开挖面以上1 /3 深度处,与顺作法位于基底开挖面附近区别较大。在竖直方向上,随着开挖深度不断加深,墙体的隆起值不断增加,但每步开挖后墙体隆起均有一定的滞后性,底层板浇筑后隆起趋于平缓。同时认识到基坑逆作法相对于顺作法具有变形小、整体性强的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号