共查询到18条相似文献,搜索用时 46 毫秒
1.
在方面级情感分析任务中,现有方法难以有效利用句法关系类型且性能依赖依存解析的准确性,为此提出注意力增强的关系门控图卷积神经网络(ARGCN)模型.该模型将双向长短时记忆(BiLSTM)网络学习得到的句子顺序特征与依存概率矩阵相结合构建单词图;利用关系门控图卷积神经网络(RG-GCN)和注意力增强网络(AAN)分别从单词图和句子的顺序特征中获取方面词的情感特征;拼接RG-GCN和AAN的输出作为方面词最终的情感特征.在数据集SemEval 2014、 Twitter上进行对比实验和消融实验,结果表明ARGCN模型可以有效地利用关系类型,减小依存解析准确性对模型性能的影响,更好地建立方面词和意见词的联系,模型准确率优于所有基线模型. 相似文献
2.
针对以往大多数方面级情感分析研究中方面词与上下文交互信息缺失,无法充分利用语义信息等问题,提出一种基于自注意力与图卷积网络结合的方面级情感分析模型。为了提高模型的语义表示能力,一方面利用多头自注意力机制,获取文本长距离依赖关系,与依存关系类型矩阵结合,计算融合位置信息和关系类型信息的权重矩阵,输入图卷积网络获取文本特征表示;另一方面设计了文本-方面注意力层,增强方面与上下文的交互,输入图卷积网络获取方面特征表示;最后连接2个向量,完成情感分析任务。在2个开放数据集中,所提模型的整体性能优于其他对比模型。 相似文献
3.
提出基于卷积-门控循环单元(convolution-gated recurrent unit, C-GRU)的微博谣言事件检测模型。结合卷积神经网络(convolutional neural networks, CNN)和门控循环单元(gated recurrent unit, GRU)的优点,将微博事件博文句向量化,通过CNN中的卷积层学习微博窗口的特征表示,将微博窗口特征按时间顺序拼接成窗口特征序列,将窗口特征序列输入GRU中学习序列特征表示进行谣言事件检测。在真实数据集上的试验结果表明,相比基于传统机器学习方法、CNN和GRU的谣言检测模型,该模型有更好的谣言识别能力。 相似文献
4.
挖掘位置社交网络(LBSNs)中的签到数据背后所蕴藏的信息是城市计算、智慧城市的重要研究方向,其中一个关键的任务是推断位置语义。位置语义因其在位置检索、位置推荐、数据预处理等领域的广泛应用而受到越来越多的关注。现有的推断方法倾向于手工提取位置的时空特征或用户签到活动的时空模式训练分类器进而推断位置语义。然而,提取有价值的时空模式或时空特征是一项困难的任务。该文提出一种新的基于图卷积神经网络的位置语义推理模型(SI-GCN)。SI-GCN利用node2vec和变分自编码器来学习位置的空间和时间特征。构建用户?位置访问二部图,利用图卷积神经网络来捕获用户签到活动中的高阶信息。此外,SI-GCN引入自注意力机制区分用户?位置访问二部图中不同邻居节点的贡献。SI-GCN在两个真实签到数据集上的实验表明,SI-GCN比现有3种算法具有更好的推断性能。 相似文献
5.
6.
近年来,基于深度学习的交通流预测方法一直是交通流预测领域的研究热点.与传统卷积神经网络不同,适合处理非欧几里得数据的图卷积网络在空间特征建模方面表现出了强大的能力,而反映路网空间特征的拓扑图、距离图、流量相似图等正是典型的非欧几里得数据.因此,基于图卷积网络及其变体的交通流预测方法成为交通流预测领域的一个研究热点,并取得了很多有吸引力的研究结果.本文对近年来基于图卷积网络的交通流预测模型进行了分类和总结.首先,从图卷积网络的基本定义出发,结合空域图卷积和谱域图卷积的定义详述了图卷积的基本原理.其次,根据预测模型的网络结构特点,将基于图卷积网络的交通流预测模型分为“组合型”和“改进型”两大类,并对其中最具代表性的模型结构进行了详细分析和讨论. 此外,对交通流预测领域中常用于模型性能对比的典型数据集进行了综述,并以其中一个真实数据集为例开展仿真测试,展示了4个基于图卷积网络交通流预测模型的预测性能.最后,基于当前的研究现状和发展趋势,对基于图卷积网络的交通流预测方法研究领域中未来的研究热点和难点进行了开放性的讨论和展望. 相似文献
7.
针对在深度聚类中大部分基于图卷积网络(graph convolutional network, GCN)的方法仅使用拓扑图而忽略了特征空间中存在的结构信息的问题, 提出一种通过引入特征图更充分地利用特征空间中存在的结构信息的节点聚类方法. 首先, 该方法使用自动编码器(auto-encoder, AE)来学习节点特征的潜在表示, 同时在特征图、拓扑图及节点属性3个层面获得节点嵌入; 然后, 使用融合机制对学习到的节点嵌入进行融合; 最后, 通过自监督的方式训练网络实现节点聚类. 在6个基准数据集上的大量实验表明, 该方法明显提高了聚类精度.
相似文献8.
基于图卷积网络的交通预测综述 总被引:1,自引:0,他引:1
交通预测是智能交通系统中的关键问题之一,精准的交通预测对于城市交通运营调整、物流运输产业提质增效以及公众出行规划等交通需求具有重要作用.近年来,多种用于解决交通预测问题的深度学习的框架已经被提出,其中图卷积网络(graph convolutional network,GCN)及其变体在各类交通预测模型中脱颖而出,取得了可观的准确率.因此,对基于GCN的交通流预测模型进行归纳总结,从图卷积的基本定义出发,以频域图卷积和空域图卷积为主,介绍GCN的基本原理.随后,通过对图时空网络、图自编码器以及图注意力网络的介绍,阐明该领域模型的发展历程,分类综述不同预测模型的结构及特点.在介绍常用交通预测数据集的基础上,以应用研究、模型研究以及多源数据融合为切入点,探讨了未来该领域的研究方向. 相似文献
9.
传统的元启发式算法难以有效求解大规模开放车间调度问题(OSSP),为此提出了一种基于图卷积网络GCN求解OSSP的方法。首先,设计了基于GCN的开放车间调度模型,将OSSP的工序节点特征嵌入图中并对其进行多层卷积操作,有效获取了工序节点之间复杂的依赖关系。然后,为了提高求解大规模OSSP的效率和质量,提出了一种基于GCN的开放车间调度算法。实验结果表明,该方法能有效求解不同规模的OSSP实例,与元启发式算法相比,在求解大规模OSSP实例时该方法表现出更优秀的求解质量和效率。 相似文献
10.
针对航空行李自动化码放处理需求下构型特征感知能力不足的问题,设计以PointNet++为基准,融入图卷积神经网络和自注意力机制的航空行李特征感知网络模型.在骨干网络的特征抽象层中引入局部空间注意力模块,提取航空行李点云中相邻点的关联空间结构特征,感知区域特征空间的内在联系.通过全局特征聚合模块学习行李点云局部特征间的相关性,自适应聚合航空行李局部特征,形成点云全局上下文信息.利用循环最大池化层回收特征降维中丢弃点的特征,在多个层次上收集航空行李的特征信息,在减少信息冗余的同时,保留强度鲜明的局部、全局特征激活.实验结果表明,航空行李分类的平均精度和整体精度分别为94.68%和96.32%,比PointNet++分别提高了6.53%和5.07%.该网络模型的航空行李特征感知性能优于现有的其他智能算法,能够为航空行李码放空间优化及控制提供准确、可靠、有效的输入. 相似文献
11.
根据图论将复杂网络转化为图结构数据,使卷积神经网络能够高效方便地处理;通过将图像上的卷积操作延伸到图结构数据上来定义卷积核,并通过卷积层对图的粗粒化和池化操作,提取不规则数据复杂网络的特征. 在采用随机梯度下降法训练网络时,设计一种重要性抽样方法改变样本的分布来缩减方差,从而节省梯度计算时间. 实验结果表明,与现有的图卷积网络相比,该方法在社会网络、引文网络、知识图谱数据集中,均能够以较低的计算复杂度获得较好的社团发现准确率;而且能够减少计算时的内存占用,可扩展到更大规模的复杂网络中使用. 相似文献
12.
针对行人轨迹预测任务中行人间的交互模式难以被有效构建的问题,提出了一种基于图卷积神经网络的算法TP-GCN来建立行人交互模型并进行轨迹预测.首先对行人的轨迹序列使用长短期记忆网络提取轨迹运动特征;随后将行人视为图结构中的顶点,创建表示相互关系的邻接矩阵,并根据视觉盲区范围筛除无关顶点间的连接权重;然后对于轨迹运动特征,... 相似文献
13.
针对受限通信条件下机器人群集协同控制问题,提出基于图卷积模仿学习的分布式群集控制策略. 该策略旨在实现群集内避障、速度一致性的基础上,提高群集鲁棒性,提升避免群集分裂的成功率. 提出基于熵评价的群集鲁棒性量化评价指标,建立节点和链路重要性的均衡分布与群集鲁棒性的联系. 提出重要度相关图卷积网络,用于实现受限通信条件下非欧氏数据的特征提取和加权聚合. 采用图卷积模仿学习方法,根据提升群集鲁棒性的要求设计集中式专家策略,通过对集中式专家策略的模仿,得到分布式群集协同控制策略. 设计仿真实验,证明所得的分布式策略基于受限通信条件实现了接近集中式的专家策略的控制效果. 相似文献
14.
在生产过程中,预制构件尺寸不合格问题将导致其在施工现场无法顺利安装,从而影响工期。为推进预制构件智能化生产的进程,以预制叠合板为例,基于卷积神经网络研究生产过程中的智能检测方法,在生产流水线上设计并安装图像采集系统,建立预制叠合板尺寸检测数据集。通过YOLOv5算法实现对混凝土底板、预埋PVC线盒及外伸钢筋的识别,并以固定磁盒作为基准参照物进行尺寸检测误差分析,实现混凝土底板尺寸、预埋PVC线盒坐标的检测,在降低训练数据集参数规模的工况下保持较高的识别精度。结果表明:该方法可以有效检测预制叠合板的底板数量和尺寸、预埋PVC线盒数量和坐标,并实现弯折方向不合格的外伸钢筋检测,并能降低人工成本,提高检测精度,加快检测速度,提高预制叠合板的出厂质量。 相似文献
15.
针对实体邻域三元组缺少联系的问题,提出基于关系生成图注意力网络(RGGAT)的知识图谱链接预测方法. 利用不同类型的关系生成相应的注意力机制参数,邻域三元组按照关系类型使用对应的参数计算注意力系数. 实体通过聚合以关系为主导的邻域三元组信息得到更丰富的嵌入向量. 在训练过程中对编码器和解码器进行共同训练,将编码器更新的实体向量和关系向量直接输入到解码器中,保证编码器和解码器训练目标一致. 在3个公开数据集上进行链接预测实验,对比实验选用目前主流的5个模型作为基线. RGGAT方法在3个数据集上的Hits@10能达到0.519 8、0.510 4和0.973 9,高于传统图注意力网络嵌入方法的. 在邻域聚合阶数对比实验中,1阶关系邻域聚合的方法相比2阶关系在Hits@10上提升3.59%. 相似文献
16.
为了在钻杆故障早期诊断出钻杆的故障类型,提出一种基于一维卷积神经网络的钻杆故障诊断模型,对模型的结构和参数进行详细地设计与分析. 参考现有的卷积神经网络模型,结合钻杆的工作特性以及感受野的原理,设计模型的卷积层和池化层的层数、卷积核的大小以及滑动步长. 该模型省去了对故障信号特征提取的过程,比先前的钻杆故障诊断有更高的诊断准确率. 该模型在不同转速工况下和不同土质工况下均具有较强的适应性和抗噪能力. 相似文献
17.
针对已有聚合式图嵌入方法多采用均匀采样函数为图中节点构建邻域,即仅随机采样邻居节点,而忽略各邻居节点自身性质的差异的问题,提出基于度值的非均匀邻居节点采样方法. 针对目标节点,优先采样其度值较大的邻居节点;隐藏一批度值较小的邻居节点,使它们在采样过程中不出现;在邻居节点集中随机采样剩余的节点以保留一定的采样随机性,这些随机采样的节点与优先采样的节点组成目标节点的邻域. 将所提出的非均匀邻居节点采样方法应用于图嵌入过程,在Reddit数据集上的图嵌入分类F1分数为91.7%,该结果优于几个知名的图嵌入方法的结果. 在重叠社团数据集PPI上的实验证实提出方法能够为图数据生成更高质量的嵌入. 相似文献
18.
为了增加新闻推荐的辅助信息并提高预测精度,提出基于Transformer和知识图谱的新闻推荐方法.为了结合新闻语义信息和实体信息,利用自注意力机制获取新闻单词之间和新闻实体之间的联系,采用加法注意力机制捕捉单词和实体对新闻表示的影响.考虑到用户对新闻的偏好具有时序性特点,引入Transformer以捕捉用户点击新闻间的关联信息及用户兴趣随时间的变化情况.利用知识图谱中的高阶结构信息,融合候选新闻邻接实体,提升候选新闻嵌入向量所含信息的完整性.在2个版本的MIND新闻数据集上与5个典型推荐方法的对比实验表明,注意力机制、Transformer和知识图谱的引入提高了算法在新闻推荐方面的表现. 相似文献