首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用直流碳弧等离子体法成功制备了碳包覆铁纳米颗粒,利用透射电子显微镜和高分辨透射电子显微镜、X射线衍射、X射线能谱仪对样品的形貌、物相结构、化学成分和粒度进行表征分析,并对碳包覆纳米金属颗粒的形成机理进行初步探讨。结果表明:直流碳弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的铁核(bcc-Fe)/碳壳(石墨层片)包覆结构,颗粒大多呈球形和椭球形,粒径分布在20~60nm范围,平均粒径为44nm,铁粒子外碳层的厚度为5~8nm。碳包覆铁纳米铁颗粒是通过颗粒内部固态形式的碳自行扩散至颗粒表面和颗粒外部气态形式的碳沉积到颗粒表面形成的。  相似文献   

2.
原位同生法制备纳米铜改性酚醛树脂   总被引:4,自引:0,他引:4  
利用新发明的原位同生法成功地制备了摩擦材料用纳米铜改性酚醛树脂。经过X射线衍射分析证实,利用该方法制备的树脂中含有单质铜。用透射电子显微镜表征了铜粒子的形貌:呈球形,粒径为10nm~40nm。通过热重分析和冲击试验,对合成树脂的热性能和韧性进行了研究。结果显示,制备树脂的初始分解温度和半分解温度随纳米铜含量的增加先升高后降低,在含量为7%时分别达到最大值;制备树脂基摩擦材料的冲击强度随纳米铜含量的增加先增大后下降,在含量为5%时达到最大值。建立了纳米铜粒子与酚醛树脂相互作用的物理模型,并分析了纳米铜提高酚醛树脂热性能和韧性的机理。  相似文献   

3.
用磁控溅射在醋酸纤维基片上获得纳米晶(20~30nm)铜膜,在透射电镜下原位拉伸的结果表明,在加载裂尖前存在由局部塑性变形引起的减薄带,微孔洞在减薄带中形核。导致主裂纹扩展的孔洞长大和连接过程也与局部塑性变形有关。  相似文献   

4.
通过对直流电弧等离子体制备的Ni纳米颗粒钝化处理得到NiO包覆Ni纳米颗粒。并对试样的组成成分、形貌、晶体结构、粒度和氧化特性采用高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和选区电子衍射(SAED)、热重和差示扫描量热分析仪(TGA/DSC)等手段进行分析。结果表明:经过表面钝化处理的NiO包覆Ni纳米颗粒具有明显的核-壳结构,内核为纳米Ni,外壳为NiO氧化物。颗粒呈球形,粒度均匀,分散性良好,粒径分布在20~70nm范围内,平均粒径为44nm,壳层氧化膜的厚度为5~8nm。壳核结构防止了纳米Ni颗粒的进一步氧化和团聚。  相似文献   

5.
选用实验室自制的碳包覆纳米铜颗粒(Cu@C)为导热填料,以α,ω-二羟基聚二甲基硅氧烷为基体,采用机械共混法制备了碳包覆纳米铜颗粒/室温硫化(Cu@C/RTV)硅橡胶导热复合材料。通过透射电子显微镜、BET法、热导率测试仪、热重分析仪、万能材料试验机及邵氏硬度计等方法和手段,完成Cu@C纳米颗粒填料的微观形貌分析和比表面积测定,并研究了Cu@C填料在低填充量下(30%)(质量分数,下同)对于Cu@C/RTV硅橡胶导复合材料热导率、热稳定性及力学性能的影响。结果表明,Cu@C纳米颗粒为球形、包覆型核壳结构,平均粒径在50 nm左右,其比表面积为69.66 m2/g。Cu@C/RTV硅橡胶导热复合材料的热导率随着Cu@C纳米颗粒填充量的增加而增大;填充量为30%时,复合材料的热导率可达2.41 W/m K;加入Cu@C纳米颗粒填料能够将RTV硅橡胶的热分解起始温度提高到422℃,并延缓其最终分解温度至625℃;随着Cu@C/RTV硅橡胶导热复合材料中Cu@C纳米颗粒填充量的增加,复合材料的拉伸强度和断裂伸长率呈下降趋势,而100%定伸应力和硬度则呈增大趋势。  相似文献   

6.
采用直流电弧放电等离子体技术成功制备了碳包覆NiO(NiO@C)纳米颗粒,并对样品的形貌、晶体结构、粒度、比表面积和孔结构采用高分辨透射电子显微镜、X射线衍射、X射线能量色散分析谱仪、拉曼散射光谱和N_2吸-脱附等测试手段进行了分析。实验结果表明:直流电弧等离子体技术制备的NiO@C纳米颗粒具有典型的核壳结构,内核为面心立方结构的NiO纳米颗粒,外壳为碳层。颗粒形貌主要为立方体结构,粒度均匀,分散性良好,粒径分布在30~70nm范围,平均粒径为50nm,外壳碳层的厚度为5nm。NiO@C纳米颗粒BET比表面积为28m~2/g,等效直径为46nm,与TEM和XRD测得的结果基本一致。Raman光谱说明样品中碳包覆层的石墨化程度较低,发生了红移现象。  相似文献   

7.
紫外光原位固化纳米复合材料制备的优化设计   总被引:1,自引:0,他引:1  
用正交试验法优化了紫外光原位固化制备纳米复合材料过程中分散时间、活性单体之间的比例、环氧丙烯酸酯树脂含量和纳米SiO2含量之间的配比。试验结果表明,优化制备的纳米SiO2/环氧丙烯酸酯树脂复合材料的力学性能、收缩率、光学性能均有较大的提高,纳米SiO2在基体中得到比较均匀的分散。  相似文献   

8.
以醋酸铜为母体,维生素C(Vc)为还原剂,吐温-80为修饰剂,用原位合成一步法在基础油液体石蜡中成功制备了粒径分布为2.3—9.5nm、平均粒径为4.3nm的纳米铜胶。以制备的纳米铜胶的液体石蜡为润滑油添加剂,将其分散于关孚1号5w-30全合成机油中,制得分散稳定性、兼容性优良的纳米润滑油,在UMT-II摩擦磨损实验机、四球摩擦磨损实验机上分别考察添加纳米铜胶的润滑油的摩擦学性能,利用扫描电镜(SEM)和能谱散射光谱(EDS)分析磨损表面形貌,结果表明,添加的纳米铜胶在摩擦表面的划痕和犁沟处沉积并铺展成膜,相比关孚1号5w-30全合成机油,较大程度地降低了摩擦副的摩擦因数,显著改善了润滑油的润滑性能,表现出优异的抗磨减磨性能、极压性能和极限工作能力等摩擦学性能。  相似文献   

9.
超细金刚石(UFD)粉体高温易氧化、分散稳定性差使其在高温、溶液等环境中的应用受到极大限制。采用硅低温热解-活化-包覆复合工艺实现了超细金刚石表面包覆改性,成功制备了具有纳米尺度核-壳结构的UFD/Si复合粉体。用拉曼和透谢电镜分别表征了包覆粉末石墨化程度,探究包覆前后粉体的相成分,复合粉体形貌及包覆层厚度;用热重分析仪和傅里叶红外光谱结合粉体在10%硫酸悬浮液中的稳定静置时间分别测定UFD包覆前后的抗氧化性和分散稳定性。结果表明,850℃时的原位热解反应使Si活化量充足,无定型硅层均匀包裹着金刚石颗粒呈椭球形,包覆层厚度为10~30 nm,物相主要为金刚石和无定型硅。核-壳结构的UFD/Si复合粉体具有抗高温氧化性,硅层阻隔了金刚石与氧气直接接触,其初始氧化温度较纯UFD从500℃提高到780℃,945℃时才被彻底氧化。包覆减少了金刚石表面的官能团,减弱了颗粒之间的吸附,包覆Si后的UFD粉体在10%稀硫酸悬浮液中的沉降时间较纯UFD提升了12 h以上。  相似文献   

10.
碳纳米笼(CNC)的应用很广泛,但原始CNC具有金属核心,必须去除该核心才能得到空心CNC。采用氯化铵低温热处理原始CNC,再用水过滤得到空心产品。结果表明,这是一种很好的纯化方法。同时深入研究了该方法的机理,提出一种解释:氯化铵分解产物扩散进CNC后与金属核心反应,产物以气态形式扩散出CNC,最终消耗掉金属核心。  相似文献   

11.
一些器材在封存中除了要求封存材料不仅具有防腐蚀、防霉功能,还要有防静电的功能。阐述了封存材料防静电原理,研制防静电封存材料,并进行了形貌分析和性能测定。结果表明,该材料不仅具有优异的物理、力学性能,而且具有优良的防静电性能,体积电阻率为1.6×104Ω.cm。  相似文献   

12.
以丙烯为碳源, FeCl3·6H2O为催化剂, 采用化学气相沉积法(CVD)在碳毡和不同密度的C/C复合材料上原位气相生长碳纤维(VGCFs) , 并以含原位生长VGCFs的碳毡和不同密度的C/C复合材料为基体制备VGCFs-C/C复合材料。研究了反应压力、基体密度对VGCFs生长情况的影响, 借助扫描电镜(SEM)、光学显微镜观察原位生长VGCFs的形貌及基体原位生长VGCFs后热解炭形貌的变化, 并对比研究了C/C复合材料和VGCFs-C/C复合材料的弯曲性能。研究结果表明, 反应压力为3700 Pa, 基体密度低的情况更有利于VGCFs的生长; 原位生长的VGCFs改变了纤维表面热解炭的沉积形貌, 使得热解炭和碳纤维的结合面之间形成具有铆钉作用的球状结构, 增强了界面结合力, 从而提高了原位生长的高VGCFs含量样品的弯曲强度。  相似文献   

13.
新型纳米铜/石蜡/膨胀石墨温敏复合材料的制备及性能   总被引:1,自引:0,他引:1  
采用高能球磨法制备纳米铜/石蜡/膨胀石墨温敏复合材料,用扫描电镜(SEM)、高分辨透射电镜(TEM)对复合材料的微观形貌进行了表征,并测试了复合材料的膨胀性、温敏性和稳定性。结果表明,石蜡对铜粒的包覆效果良好,球磨98 h的复合颗粒近似球形,粒径约为100 nm。纳米铜/石蜡复合颗粒嵌入膨胀石墨的网络孔隙中。膨胀石墨使复合材料的膨胀性降低,改善其温敏性能,并使复合材料在高于相变温度下保持较高的稳定性。  相似文献   

14.
核壳型铁钴复合材料的制备及其微波吸收性能的研究   总被引:10,自引:2,他引:8  
刘飚  官建国  王琦  张清杰 《功能材料》2005,36(1):133-135
采用多元醇还原工艺和自组装技术,通过在微米级Fe粉表面包覆纳米Co粒子,制备了一种具有核壳结构的复合磁性微球,表征了它们的相组成结构,测试了它们的微波电磁参数,研究了它们的微波吸收性能。结果表明:用该法制备的核壳型Fe/Co复合材料能够实现表面包覆致密,将其作为微波吸收剂,可以改善传统羰基铁粉吸收剂的频散特性,可使吸收量大于8dB的频带宽度达到7GHz。  相似文献   

15.
潘利文 《材料导报》2015,29(15):1-4
由于直接外加增强体液态法制备颗粒增强铝基复合材料存在诸多的问题,而固-液原位反应法制备铝基复合材料具有外加法所没有的一些优点,因此近年来固-液原位反应法引起了广泛关注。重点概述了接触反应法、混合盐反应法、还原反应法、自然浸润法4种固-液原位反应法制备铝基复合材料的最新研究进展。最后,总结了当前固-液原位反应法遇到的难题,并提出今后固-液原位反应法制备铝基复合材料的研究方向。  相似文献   

16.
分别研究了原位AgBr和AgI对亲水性PTG材料的感光性能以及热加工后光稳定性的影响。结果表明,AgBr与硬脂酸银(AgSt)的摩尔比为0.01:1时,PTG材料可取得最大感光度,对于AgI可取得相似的结果。未曝光PTG样片经热显影后,在室内光照条件下产生灰雾的程度不同。含有原位AgI的PTG样片的灰雾增长约0.10左右,而含有原位AgBr的PTG样片灰雾增长约0.20左右。  相似文献   

17.
周璐  马红和  马素霞  杜慧娟 《材料导报》2018,32(15):2576-2583
纳米流体技术的不断发展为直接吸收式太阳能集热介质的研究提供了强有力的支持。铜价格低廉、储量丰富且导热性能良好,将纳米尺度的铜粒子稳定分散于传统集热介质中制得的纳米流体悬浮液对可见光波段表现出强吸收性能。本文首先对纳米流体中常见的球形、立方体、棒状和线状铜纳米粒子添加物的水热还原制备方法进行了综述,重点讨论了表面活性剂在产物形貌控制中的作用及其对纳米粒子在基液中分散稳定性的影响。进而分别对铜纳米流体的导热系数、粘度、比热及光能辐射特性的研究现状进行了归纳总结,给出了铜纳米流体在直接吸收式太阳能集热系统中的应用现状。最后,提出了铜纳米流体应用于太阳集热器循环工质尚需解决的问题及进一步的研究方向。  相似文献   

18.
在磷酸盐缓冲溶液中于玻碳电极表面聚合邻苯二胺,再负载纳米铜氧化物,成功制备了邻苯二胺负载纳米铜氧化物修饰玻碳电极(CuO/P-oPD/GC).探讨了聚合和负载机理,用电化学交流阻抗谱表征了修饰电极界面的阻抗变化,用扫描电镜表征了聚邻苯二胺膜和负载铜氧化物后的表面形态,发现CuO/P-oPD/GC电极对H2O2有显著的电催化氧化、还原双重活性,并呈现"协同增敏"效应.考察了制备条件对CuO/P-oPD/GC电极电催化活性的影响,最佳CoO负载扫描次数为20,Cu2+的质量浓度为1.67mmol/L.对H2O2电催化氧化的线性方程为△ip8(μA)=0.08+5.64c(mmol/L)(R=0.9982),线性范围为2.4×10-2~48mmol/L,检测限为2.8×10-3mmol/L(3S/k);电催化还原的线性方程为△ipc(μA)=0.11-2.45c(mmol/L)(R=0.9820),线性范围为2.4×10-3~38.4mmol/L,检测限为2.0×10-4mmol/L(3S/k).该复合材料修饰电极的灵敏度高、稳定性好,用于实际水样中H2O2测定结果满意.  相似文献   

19.
以硝酸锆、硝酸镧、硝酸钇和柠檬酸为原料,原位合成了La2Zr2O7、氧化钇稳定氧化锆(YSZ)及其La2Zr2O7-YSZ复合材料。采用X射线衍射和拉曼光谱对样品进行分析和表征,研究La2Zr2O7、YSZ和La2Zr2O7-YSZ复合材料的物相组成与高温热稳定性。结果表明:合成的La2Zr2O7和YSZ均为单一纯相。在1 200℃煅烧6 h条件下合成的系列复合材料(物质的量比n(La2Zr2O7)∶n(YSZ)=1∶8~10∶1)中均未发现单斜ZrO2相和其他化合物的生成。在1 400℃煅烧24 h条件下合成的LZYZ11中出现单斜ZrO2相,此时La2Zr2O7对YSZ的稳定效果不大。  相似文献   

20.
刘光志  李伟  费又庆 《材料导报》2018,32(2):213-218
以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料。主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察。研究表明:当热处理温度为280℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化。RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号