首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
先分别在碳纤维表面磁控溅射镀覆厚度约0.8 μm均匀分布的TiC和Ni,然后用传统粉末冶金技术制备碳纤维(体积分数为2.5%)增强铜基复合材料。结果表明,铜基复合材料的力学性能与电性能协同提高。碳纤维在基体中分布均匀,没有出现明显的偏聚。溅射钛的碳纤维增强复合材料的硬度和电性能分别为40.8HV和91.0%IACS,溅射镍的碳纤维增强复合材料的硬度和电性能分别为38.8HV和79.7%IACS。在结合界面Ti与C或Ni与Cu发生反应,都有利于界面结合。  相似文献   

2.
为提高碳纤维/铜(Cf/Cu)复合材料中Cf与Cu基体的结合强度,通过电化学法在Cf表面沉积一层约1μm厚的Ni镀层,进而沉积厚约6μm的Cu镀层,将镀覆Ni-Cu复合镀层的短纤维复合丝在800℃、20MPa下利用放电等离子烧结(SPS)制备镀镍碳纤维增强的铜基复合材料(Cf/Cu(Ni)),并与相同烧结工艺下制备的相同碳纤维体积分数的Cf/Cu复合材料进行对比。利用XRD和SEM分别研究了碳纤维表面Ni镀层的物相及表面形貌,用附带EDS的SEM研究了Cf与Ni-Cu复合镀层断面、Cf/Cu(Ni)复合材料表面及断口形貌,采用电子式万能试验机研究了未经修饰的碳纤维、镀Ni碳纤维、镀Cu碳纤维和Cf/Cu(Ni)以及Cf/Cu复合材料的拉伸性能。结果表明,镀Ni碳纤维复合丝的拉伸强度略高于未经修饰的碳纤维,断裂伸长率则略低于未经修饰的碳纤维,拉伸过程中Ni镀层无剥离,这与其表面Ni镀层和Cf的结合强度较高有关。Cf/Cu(Ni)复合材料呈塑性断裂,力学性能明显优于Cf/Cu复合材料,拉伸强度提高20%以上。  相似文献   

3.
采用球磨和真空热压烧结方法成功制备氧化石墨烯/铜复合材料。利用OM,SEM,XRD,显微硬度计和电子万能试验机等分析球磨后的复合粉形貌,研究氧化石墨烯添加量对复合微观结构及力学性能的影响。结果表明:制备的氧化石墨烯/铜基复合材料组织致密,氧化石墨烯以片状形态较均匀地分布在铜基体中,并与铜基体形成良好的结合界面。氧化石墨烯质量分数为0.5%时,复合材料的综合力学性能较好,显微硬度和室温压缩强度分别为63HV和276MPa,相对于纯铜基体分别提高了8.6%和28%。其强化机理为剪切应力转移强化、位错强化和细晶强化。  相似文献   

4.
为改进铜基复合材料的力学和电学性能,向铜基体分别加入0.2%、0.3%、0.4%(质量分数)的石墨烯,充分混合后,采用放电等离子烧结技术(SPS)制备了石墨烯/铜(G/Cu)复合材料。通过扫描电镜(SEM)、拉曼(Raman)光谱和XRD等表征了复合材料微观结构,测试了其硬度、屈服强度、抗压强度和导电率等性能,以确定石墨烯在铜基体中的合适掺杂量。结果表明:随着石墨烯含量的降低,其力电性能显著提高。当石墨烯质量分数为0.2%时,G/Cu复合材料的综合性能(力学及电学性能)达到最好匹配,实现了铜基材料的高强度、高导电性:其抗压强度和屈服强度分别为557.23 MPa和256 MPa,相对于用SPS方法制备的纯铜分别提高了59.21%和70.7%;电导率为52.3 MS/m,其IACS高达91.8%。  相似文献   

5.
浸渗法制备双连续TiB2/(Cu,Ni)复合材料的组织和性能   总被引:1,自引:0,他引:1  
用高温粉末烧结结合自发浸渗法制备高TiB2含量(体积含量约为86%)的双连续TiB2/(Cu,Ni)复合材料,研究了不同陶瓷体积含量多孔材料对TiB2/(Cu,Ni)复合材料微观组织和力学性能的影响.采用XRD和SEM分析了复合材料的相组成和微观结构,用三点弯曲试验测试了复合材料的弯曲强度和断裂韧性.结果表明:经过预制坯高温烧结后自发熔渗金属是制备致密的双连续TiB2/(Cu,Ni)复合材料的有效方法,复合材料的致密度和力学性能得到显著提高;当TiB2陶瓷体积含量为81.6%以及浸渗温度为1500℃条件下,TiB2/(Cu,Ni)复合材料的弯曲强度和断裂韧性分别达到640.5 MPa和9.37 MPa·m1/2,相对密度为98.4%.  相似文献   

6.
电化学浸渗法制备纤维/铜基复合材料   总被引:11,自引:1,他引:10       下载免费PDF全文
基于电化学浸渗技术(ECI)在室温下制备了连续铜纤维、碳纤维和玻璃纤维增强铜基复合材料。实验结果表明,在本实验工艺条件下可获得致密的纤维/Cu基复合材料,并具有优良的力学性能。复合材料的断口形貌及显微结构的SEM观察表明,纤维与铜基体之间的界面结合良好,纤维不受任何损伤。证实了ECI在室温下快速制备纤维增强金属基复合材料的可行性。  相似文献   

7.
铜(Cu)基复合材料具有优异的力学、热学、电学及耐磨和耐腐蚀等性能,广泛应用于各种工业技术领域。石墨烯(Graphene,Gr)具有二维平面结构和优异的综合性能,是金属基复合材料理想的增强相。石墨烯增强铜基复合材料拓展了铜及其合金的应用范围,适当的制备方法可以使其在保持优异导电导热性能的同时拥有更好的力学性能。石墨烯在铜基体中的存在形式主要以还原氧化石墨烯、石墨烯纳米片或与金属氧化物/碳化物纳米颗粒连接,旨在增强两者之间的界面结合。因此,石墨烯在铜基体中的结构完整性及存在形式直接影响了其性能的优劣。本文综述了Cu/Gr复合材料的制备及模拟方法、复合材料的性能评价及力学性能与功能特性的相互影响规律。指明Cu/Gr复合材料的发展关键在于:(1)分散性与界面结合;(2)三维石墨烯结构的构建;(3)界面结合对力学性能与功能特性的影响及两者间的相互协调。  相似文献   

8.
用真空熔铸法制备45/T2、304/T2复合材料,用金相观察、扫描电镜及能谱分析、X射线衍射、力学性能测试等手段研究了钢铜复合界面的结合强度、显微组织、显微硬度、界相区的成分变化等。结果表明:钢铜基体中的Fe、Cr、Cu等合金元素在界面发生了相互扩散,形成了新的铁碳化合物(CFe15.1)和固溶体Cu0.81Ni0.19、Cr-Ni-Fe-C相。在界面上有齿状的过渡带,未出现明显的金属间化合物,其显微硬度最大值为183/119 HV,宽度约为60-70μm。钢铜复合材料的抗拉、抗剪强度分别278/263 MPa、217/201 MPa,拉伸断口均出现在T2铜侧,远离界面扩散区域;界面结合机制均为扩散冶金结合,强度高于纯铜的抗拉/抗剪强度;在(1150±50℃、4.0×10-2Pa)条件下,与Cr、Ni等合金元素相比,Fe在Cu液中的扩散能力最强,而Cu对改善304/45钢的基体稳定性和强度也有重要的作用。  相似文献   

9.
袁秋红  周国华  廖琳 《材料导报》2018,32(10):1663-1667
采用铸造工艺制备了石墨烯纳米片(GNPs)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并利用光学显微镜、X射线衍射仪、透射电子显微镜、扫描电子显微镜和能谱仪对复合材料的微观组织、界面结合和断口形貌进行了表征和分析,讨论了复合材料的强化机理。结果表明:石墨烯纳米片可有效细化镁基体的晶粒组织,在添加少量石墨烯纳米片时(0.1%),复合材料的屈服强度、延伸率和显微硬度分别为(164±5)MPa、(7.7±0.1)%和(74.2±2)HV,比基体分别提高了37.8%、13.2%和24.7%。GNPs与镁基体形成了强界面结合,这更有利于发挥应力转移强化、细晶强化等作用,提高镁合金强度、塑性等力学性能。  相似文献   

10.
针对纤维增强树脂基单向复合材料横向刚强度低的问题,通过碳纳米管(CNTs)在单向复合材料横向方位取向控制技术研究,建立了一种CNTs在树脂基复合材料中电场取向装置,制备了取向CNTs/环氧树脂(EP)复合材料及取向CNTs/玻璃纤维(GF)增强环氧树脂基单向层合板,并对不同电场强度、CNTs含量对其力学性能的影响进行了试验分析。结果表明,施加300V/cm的取向电场时,添加0.2wt%多壁碳纳米管(MWNTs)/EP储能模量较未添加MWNTs时提高了68.42%,较随机方位分布MWNTs/EP提高了1.36%;取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了72.2%和92.1%,比随机方位分布MWNTs增强时分别提高了58.29%和61.43%;施加439V/cm的取向电场时,添加0.2wt%取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了64.7%和63%,比随机方位分布MWNTs增强时分别提高了51.42%和36.90%,取向CNTs/GF增强树脂基单向层合板横向刚强度均得到了大幅提高。  相似文献   

11.
Graphite nanoplatelet (GNP)/rubbery epoxy composites were fabricated by mechanical mixer (MM) and dual asymmetric centrifuge speed mixer (SM). The properties of the GNP/rubbery epoxy were compared with GNP/glassy epoxy composites. The thermal conductivity of GNP/rubbery epoxy composite (25 wt.% GNP, particle size 15 μm) reached 2.35 W m−1 K−1 compared to 0.1795 W m−1 K−1 for rubbery epoxy. Compared with GNP/rubbery epoxy composite, at 20 wt.%, GNP/glassy epoxy composite has a slightly lower thermal conductivity but an electrical conductivity that is 3 orders of magnitude higher. The viscosity of rubbery epoxy is 4 times lower than that of glassy epoxy and thus allows higher loading. The thermal and electrical conductivities of composites produced by MM are slightly higher than those produced by SM due to greater shearing of GNPs in MM, which results in better dispersed GNPs. Compression and hardness testing showed that GNPs increase the compressive strength of rubbery epoxy ∼2 times without significantly affecting the compressive strain and hardness. The GNP/glassy epoxy composites are 40 times stiffer than the GNP/rubbery epoxy composites. GNP/rubbery epoxy composites with their high thermal conductivity, low electrical conductivity, low viscosity before curing and high conformability are promising thermal interface materials.  相似文献   

12.
The effect of heat treatment of carbon nanofibers (CNFs) on the mechanical properties of CNF (Ni/Y)–Cu composites was investigated. CNF (Ni/Y)–Cu composite powder mixtures were prepared by a combination of in situ chemical vapor deposition (CVD) and co-deposition processes. The in situ CNF (Ni/Y)–Cu powder synthesized by CVD was subject to heat treatment at temperatures ranging from 700 to 1,000 °C. The morphology and quality of CNFs were characterized by transmission electron microscope, scanning electron microscope, and Raman spectroscopy. Heat treatment can improve the CNFs by eliminating the amorphous carbon and disordered graphite. Bulk composites containing various fractions of CNFs were fabricated from the powder by cold pressing and sintering followed by repressing. With the same fraction of CNFs (2.5 wt%), the strengthening efficiency of the CNFs heat treated at 800 °C is 88% higher than that of as-synthesized CNFs. The strengthening mechanism of CNFs in the composites is discussed in detail.  相似文献   

13.
Electromagnetic interference (EMI) shielding materials with ultrathin,flexible,superior mechanical and thermal management properties are highly desirable for smart and wearable electronics.Here,ultrathin and flexible Ni/Cu/metallic glass/Cu/Ni (Ni/Cu/MG) multilayer composite with alternate magnetic and electrical structures was designed via facial electroless plating of Cu and Ni on an Fe-based metallic glass.The resultant 0.02 mm-thick Ni/Cu/MG composite displays a superior EMI shielding effectiveness (EMISE)of 35 dB and a great EMISE/t of 1750 dB/mm,which is greater than those of composites with monotonous multilayer or homogeneous structures.The improved EMI SE originates from the massive ohmic losses,the enhanced internal reflection/absorption,and the abundant interfacial polarization loss.Particularly,Ni/Cu/MG exhibits a high tensile strength of up to 1.2 GPa and outstanding mechanical stability,enabling the EMI SE remains unchanged after 10,000 times of bending.Moreover,Ni/Cu/MG has excellent Joule heating characteristics and thermal stability,which is very suitable for heating components of wearable hyperthermia devices.  相似文献   

14.
This study investigated the preparation and mechanical performance of graphene/metal composites using Ni nanoparticles decorated graphene nanoplatelets (Ni-GPLs) as a reinforcing component in Cu matrix (Ni-GPL/Cu). Ni-GPLs consisting of well-dispersed Ni nanoparticles strongly attached on GPLs were successfully synthesized by chemically reducing Ni ions on the surface of GPLs. The Ni-GPL/Cu composites with only 0.8 vol% Ni-GPLs exhibited a significant improvement in ultimate tensile strength (UTS), being 42 % higher than that of monolithic Cu. The significant strength enhancement is attributed to the unique structure of Ni-GPLs, which was expected to generate a good dispersion and strong GPL–Cu interfacial bonding. The UTS of 0.8 vol% GPL/Cu composites was even lower than that of the monolithic Cu due to the GPL aggregates. The obtained results indicated that Ni-GPLs are novel and effective reinforcing components for greatly improving the mechanical properties of the graphene/metal composites.  相似文献   

15.
采用熔融共混法制备BN纤维-石墨烯微片/聚丙烯(BN纤维-GNP/PP)高导热绝缘复合材料,结合有限元模拟、SEM、XRD、导热导电测试结果,探究了BN纤维含量和长度对BN纤维-GNP/PP复合材料导热绝缘性能的影响。结果表明:BN纤维-GNP/PP复合材料中BN纤维含量和长度的增加可增大GNP分布范围,增大BN纤维与GNP的接触概率;在GNP含量为7wt%、100 μm BN纤维含量为20wt%时BN纤维-GNP/PP复合材料的热导率较PP提高了4.2倍,同时电绝缘性略有提高。模拟结果表明,高含量100 μm BN纤维的加入使BN纤维-GNP/PP复合材料导热网络的构建趋于完整,局部热通量较低的区域减少。片状GNP与纤维状BN二相填料的"协同效应",使GNP和BN纤维分别作为"岛"和"桥"形成了一种特殊的"双网络"结构,BN纤维作为高导热"桥"阻隔了相邻GNP间导电通路的形成,从而提高了BN纤维-GNP/PP复合材料的导热绝缘性能。   相似文献   

16.
Cu/Ti3SiC2 composite: a new electrofriction material   总被引:1,自引:0,他引:1  
 Cu/Ti3SiC2 composite, a new electrofriction material, was prepared, for the first time, by PM method. The microstructure, mechanical and electrical properties of the Cu/Ti3SiC2 composites were investigated and were compared with those of Cu/graphite composites. The results demonstrated that Cu/Ti3SiC2 composites had superior mechanical properties over Cu/graphite composites. At filer content of less than 20 vol%, the electrical conductivity for Cu/Ti3SiC2 composites was higher than that for Cu/graphite composites; at high filer content, the electrical conductivity for Cu/Ti3SiC2 composites was lower than that for Cu/graphite composites because of the presence of residual pores. It was found that like Cu/graphite composite, Cu/Ti3SiC2 was a self-lubricated material. The compressive yield strength, Brinell hardness, relative ratio of compressive for Cu-30 vol% Ti3SiC2 composites are 307 MPa, 140, 15.7% respectively. Received: 29 December 1998/Accepted: 15 February 1999  相似文献   

17.
Graphene nanoplatelets(GNP)/cement composites were prepared using three types of GNP with different structures. In order to investigate the effects of GNP and styrene-acrylate emulsion on properties of GNP/cement composites, GNP with different addition (0-2.0 wt%) and styrene-acrylate emulsion (10 wt%) were mixed into cement through the method of mechanical stirring. Electrical performance and the pressure-sensitive property of GNP/cement composites were studied. The results showed that the addition of GNP to cement would lead to a significant drop of resistivity and make composites manifest pressure sensitivity. In addition, the structure (C/O atomic ratio) of GNP greatly affected the properties of the GNP/cement composites. A distinct enhancement in pressure sensitivity was found when emulsion was added to GNP/cement composites. The gauge factor of emulsion modified GNP/cement composites reached a peak value of 7.783, which was 1 order of magnitude higher than composites without emulsion. This work offered a new opportunity to make use of traditional cement materials combining with GNP.  相似文献   

18.
为制备能够在Cu基体中分散均匀的大体积分数的短碳纤维(C_f)/Cu复合材料,采用电化学法在C_f表面进行了镀Cu处理,用平行Cu片做阴极代替长碳纤维束,得到镀层均匀光洁的镀Cu短C_f。在此基础上,将2V,30min条件下的C_f/Cu复合丝直接采用放电等离子烧结(SPS)制备了46vol%C_f/Cu复合材料(试样1),又用Cu粉与未包覆的C_f直接混合再烧结制备了另一种46vol%C_f/Cu复合材料(试样2)。利用XRD和SEM分别研究了C_f/Cu复合丝和C_f/Cu复合材料的物相成分、表面及断口形貌,对C_f原丝、C_f/Cu复合丝以及用2种方式制备的C_f/Cu复合材料进行了力学性能研究。结果表明:C_f/Cu复合丝拉伸载荷-位移曲线上出现了较大幅度的波动,这与其表面镀Cu层受力时发生不连续断裂有关。试样1组织的均匀性及力学性能均优于试样2。与Cu相比,用2种不同方法制备的C_f/Cu复合材料的抗拉强度低于Cu,但屈服强度比Cu高。  相似文献   

19.
Zhao  Wen-min  Bao  Rui  Yi  Jian-hong 《Journal of Materials Science》2021,56(22):12753-12763

In the development of copper-based composite materials, the dilemma of improving the mechanical properties without affecting the electrical properties is an important issue that must be solved. Here, carbonized polymer dot (CPD), as a novel reinforcement, was employed to fabricate CPD/Cu (pure copper) composite via powder metallurgy technique for the first time. The microstructure analysis revealed that the CPD was uniformly dispersed in the copper matrix in the form of nanoclusters, and the nanoclusters of CPD are composed of a three-dimensional amorphous carbon (AC) network structure and inserted carbon dots (some of them have a typical graphene structure, while others not). More importantly, excellent interface combination between the CPD and copper matrix is observed due to the existing of plenty of chemical functional groups. Based on this special microstructure, our prepared CPD/Cu composite achieves excellent mechanical and electrical conductivity simultaneously. Compared to pure Cu, the ultra-tensile strength of 0.2CPD/Cu composite is increased by about 17.0%, while the elongation is only?~?2% lower. The electrical conductivity of the composite is?~?98% IACS, which is much higher than that of pure copper prepared under the same condition (only?~?92% IACS). New insights into how to prepare advanced copper matrix composites with simultaneously improved overall performance will be found from our research.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号