首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the selective oxidation of hydrogen sulfide to elemental sulfur and ammonium thiosulfate by using Bi4V2-xSbxO11-y catalysts. The catalysts were prepared by the calcination of a homogeneous mixture of Bi2O3, V2O5, and Sb2O3 obtained by ball-milling adequate amounts of the three oxides. The main phases detected by XRD analysis were Bi4V2O11, Bi1.33V2O6, BiSbO4 and BiVO4. They showed good H2S conversion with less than 2% of SO2 selectivity with a feed composition of H2S/O2/NH3/H2O/He=5/2.5/5/60/27.5 and GHSV=12,000 h-1 in the temperature ranges of 220–260 ‡C. The highest H2S conversion was obtained for x=0.2 in Bi4V2-xSbxO11-y catalyst. TPR/TPO results showed that this catalyst had the highest amount of oxygen consumption. XPS analysis before and after reaction confirmed the least reduction of vanadium oxide phase for this catalyst during the reaction. It means that the catalyst with x=0.2 had the highest reoxidation capacity among the Bi4V2-xSbxO11-y catalysts.  相似文献   

2.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium–antimony mixed oxide catalysts. The investigation was focused on the phase cooperation between V–Sb–O and Bi2O3 in this reaction. Strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V–Sb–O and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO), two separated bed reaction tests, and XPS analyses were carried out to explain this synergistic effect by the reoxidation ability of Bi2O3.  相似文献   

3.
Vanadia phase (one monolayer) was deposited on TiO2 anatase doped with Ca2+, Al3+, Fe3+ and W6+ ions and the catalysts thus obtained (VMeTi) were characterized by XPS, work function technique, decomposition of isopropanol (a probe reaction for acido–basic properties) and tested in oxidative dehydrogenation of propane. The doping of the TiO2 support modifies physicochemical and catalytic properties of the active vanadia phase with respect to the undoped TiO2. The specific activity in the propane oxydehydrogenation decreases in the order: VFeTi>VWTi>VTi>VAlTi>VCaTi (3), whereas the selectivity to propene follows the sequence: VWTiVTi>VFeTi>VAlTi>VCaTi. This implies that the lower is the surface energy barrier for transfer of electrons from the catalyst to the reacting molecules the higher is the selectivity to the partial oxidation product. It is argued that owing to the decrease in this energy barrier the reoxidation step in the catalytic reaction, involving such a transfer: O2+4e→2O2− is fast, thus, preventing the presence of intermediate non-selective electrophilic oxygen species on the surface.  相似文献   

4.
A novel catalyst based on copper-silver was developed to solve the contradiction between the high conversion temperature of Cu-based catalyst and low N2 selectivity of Ag-based catalyst during selective oxidation of ammonium gas. The Cu-Ag-based catalyst (Cu 5 wt.%-Ag 5 wt.%/Al2O3) displayed a relatively low complete conversion temperature (<320 °C) with a high N2 selectivity (>95%). Increasing loading of Cu and Ag decreases N2 selectivity. The low N2 selectivity of Ag-based catalyst is possibly related to the formation of Ag2O crystals. Improvement of N2 selectivity of Ag-based catalyst was obtained by doping Cu to decrease crystallized Ag2O phase. The temperature programmed reaction (TPR) data show that N2O is the main byproduct of oxidation of ammonia at temperature lower than 200 °C. Two bands of nitrate species at 1541 and 1302 cm−1 were observed on Ag 10 wt.%/Al2O3 at the temperature higher than 250 °C, which indicates the formation of NOx during the selective catalytic oxidation of ammonia. No nitrate species was observed on Cu 10 wt.%/Al2O3 and Cu 5 wt.%-Ag 5 wt.%/Al2O3, while only one nitrate species (1543 cm−1) existed on Cu 10 wt.%-Ag 10 wt.%/Al2O3. We proposed that mixing Ag with Cu inhibited the formation of NOx during the selective catalytic oxidation of ammonia over Cu-Ag/Al2O3.  相似文献   

5.
CrOx and CrOx supported on SiO2 have been found to be active for the selective oxidation of hydrogen sulfide to elemental sulfur. The catalysts show maximum sulfur yield at a stoichiometric ratio of O2/H2S, 0.5. Amorphous Cr2O3 exhibits higher yield of sulfur and has stronger resistance against water than supported Cr/SiO2, especially at low temperatures. At high temperatures above 300°C, the sulfur yield over the supported catalyst becomes similar to amorphous Cr2O3 because the Claus reaction occurring on the silica support removes SO2 to increase the sulfur yield. Active sites are the amorphous monochromate species that can be detected as a strong temperature programmed reduction (TPR) peak at 470°C. Catalytic activity can be correlated with the amount of labile lattice oxygen and the strength of Cr–O bonding. The reaction proceeds via the redox mechanism with participation of lattice oxygen.  相似文献   

6.
The systems based on granular mesoporous nanofibrous carbonaceous (NFC) materials synthesized by decomposition of hydrocarbons over nickel-containing catalysts are promising catalysts for selective oxidation of hydrogen sulfide. Sample series of nanofibrous carbon with three main types of their fiber structures and different contents of metal catalysts inherited from the catalysts for their synthesis were studied in this reaction. The correlation between NFC structure and its activity and selectivity in hydrogen sulfide oxidation was determined. The metal inherited from the initial catalysts for the synthesis of NFC influences the activity and selectivity of the resulting carbon catalysts. A particular influence is observed in the case of the catalyst withdrawn from the synthesis reactor at the stage of stationary operation of the metal catalyst (low specific carbon yields per unit weight of the catalyst). The presence of the metal phase results in an increase in the carbon catalyst activity and in a decrease in the selectivity to sulfur. NFC samples with the highest activity and selectivity are nanotubes and those with graphite planes perpendicular to the axis of the fibers. Carbon nanotubes have high selectivity, while samples obtained on copper–nickel catalysts also possess high activity. The promising NFC catalysts provide high conversion and selectivity (almost independent of the molar oxygen/hydrogen sulfide ratio) when a large excess of oxygen is contained in the reaction mixture.  相似文献   

7.
8.
The results of a complex investigation of V–Mg–O catalysts for oxidative dehydrogenation (ODH) of methanol are presented. The efficiency of vanadium–magnesium oxide catalysts in production of formaldehyde has been evaluated. Strong dependence of the formaldehyde yield and selectivity upon vanadium oxide loading and the conditions of heat treatment of the catalyst were observed. The parameters of the preparation mode for the efficient catalyst were identified. In optimised reaction conditions the V–Mg–O catalysts at the temperature approximate 450 °C ensured the formation of formaldehyde with the yield of 94% at the selectivity of 97%.

No visible changes in the performance of the catalyst (methanol conversion, formaldehyde yield and selectivity) were detected during the 60 h of operation in prolonged runs. Characterization of the catalyst by XRD, IR, and UV methods suggests the formation of species of the pyrovanadate type (Mg2V2O7) with irregular structure on the surface of a V–Mg–O catalyst. These species make the catalyst efficient for methanol ODH.  相似文献   


9.
The selective oxidation of hydrogen sulfide to sulfur was studied over iron-molybdenum oxides with various Fe-Mo ratios. Strong synergistic phenomenon in catalytic activity was observed for the Fe-Mo-O binary oxides. Under identical reaction conditions, the areal rates of the binary oxides were superior to those of the corresponding single oxide catalysts, which suggest that the new compound Fe2(MO4)3 formed in the binary oxide is more active than Fe2O3 and MoO3. The oxidation rates of H2S were found to exhibit first-order dependence on the hydrogen sulfide concentration, which implies that the activation of H2S is the rate-limiting step.  相似文献   

10.
The direct synthesis of methanethiol, CH3SH, from CO and H2S was investigated using sulfided vanadium catalysts based on TiO2 and Al2O3. These catalysts yield high activity and selectivity to methanethiol at an optimized temperature of 615 K. Carbonyl sulfide and hydrogen are predominant products below 615 K, whereas above this temperature methane becomes the preferred product. Methanethiol is formed by hydrogenation of COS, via surface thioformic acid and methylthiolate intermediates. Water produced in this reaction step is rapidly converted into CO2 and H2S by COS hydrolysis.

Titania was found to be a good catalyst for methanethiol formation. The effect of vanadium addition was to increase CO and H2S conversion at the expense of methanethiol selectivity. High activities and selectivities to methanethiol were obtained using a sulfided vanadium catalyst supported on Al2O3. The TiO2, V2O5/TiO2 and V2O5/Al2O3 catalysts have been characterized by temperature programmed sulfidation (TPS). TPS profiles suggest a role of V2O5 in the sulfur exchange reactions taking place in the reaction network of H2S and CO.  相似文献   


11.
The selective catalytic oxidation of ammonia to nitrogen (NH3-SCO) has been studied over hydrotalcite derived mixed metal oxides containing Cu, Co, Fe or Ni. XRD, BET, NH3-TPD and TPR techniques were used for catalysts characterization. Results of NH3-SCO were compared with those of selective catalytic reduction of NO with NH3 (NO-SCR). Reaction mechanism was studied by temperature-programmed surface reaction (TPSR) and activity tests with a various contact time. Catalytic performance of the studied samples depends on both kind and loading of transition metals in the mixed metal oxide system. The Cu-containing samples have been found to be the most active catalysts of the NH3-SCO process. Transition metal loading strongly influences distribution of ammonia oxidation products. The highest selectivity to N2 was measured for the catalysts with the lowest transition metal content.  相似文献   

12.
Ceria–zirconia catalysts modified by partial substitution of zirconium by iron were investigated for the reaction of the selective oxidation of methane to formaldehyde. The insertion of iron was ensured by the preparation method, based on decomposition of the mixed precursors. The crystalline structure was studied by XRD and the iron state was determined by Mössbauer spectroscopy. The insertion of Fe3+ into the lattice of the mixed oxide and the partial substitution of zirconium ions with iron cations up to 25% have not resulted in any phase rejection of the formed iron oxide. The reducibility of Ce4+ in the modified ternary oxide is enhanced by doping with iron. Despite their low specific surface area, the catalysts are efficient at activating the methane independently of the iron content. The selectivity to formaldehyde strongly depends on the amount of the iron inserted in the mixed oxide.  相似文献   

13.
Alkali metal-doped MoVSbO catalysts have been prepared by impregnation of a MoVSbO-mixed oxide (prepared previously by a hydrothermal synthesis) and finally activated at 500 or 600 °C in N2. The catalysts have been characterized and tested for the selective oxidation of propane and propylene. Alkali-doped catalysts improved in general the catalytic performance of MoVSbO, resulting more selective to acrylic acid and less selective to acetic acid than the corresponding alkali-free MoVSbO catalysts. However, the specific behaviour strongly depends on both the alkali metal added and/or the final activation temperature. At isoconversion conditions, catalysts activated at 600 °C present selectivity to acrylic acid higher than that achieved on those activated at 500 °C, both K-doped catalysts presenting the highest yield to acrylic acid. The changes in the number of acid sites as well as the nature of crystalline phases can explain the catalytic behaviour of alkali-doped MoVSbO catalysts.  相似文献   

14.
研究了二氧化锰氧化法吸收硫化氢的新工艺,考查了酸度、时间、温度等条件对吸收硫化氢工艺的影响,确定了适合的工艺参数。较合适的条件为:一段,溶液体积0.3L、硫酸浓度0.4mol/L、温度为室温、二氧化锰用量10g;二段,溶液体积0.5L、硫酸浓度0.4mol/L、温度为室温、二氧化锰用量10g。氧化剂二氧化锰被还原为硫酸锰可用氧化水解的方法再生,循环使用。研究结果表明,采用氧化吸收新工艺可以使硫化氢气体的吸收率大于97%,而且二氧化锰可以通过氧化水解的方式再生,实现了氧化剂的再生和循环利用。  相似文献   

15.
As a novel catalyst system for the selective oxidation of low alkanes, mesoporous SBA-15-supported potassium catalysts were firstly employed for the selective oxidation of propane to oxygenates by using molecular oxygen as oxidant. It was found, compared with bare mesoporous SBA-15, that the selectivities to the oxygenates including formaldehyde, acetaldehyde, acrolein and acetone were remarkably enhanced over K x /SBA-15(K:Si = x:100, mol) catalysts, and the main products were acrolein and acetone. At 500 °C, the yield of the oxygenates can reach 464% over K3.0/SBA-15, which is the highest value over SBA-15–supported potassium catalysts. The catalysts were characterized by XRD and BET techniques. The results demonstrated that the catalytic performance was strongly dependent on the potassium content of the catalysts. Furthermore, the highly dispersed potassium on the catalyst surface was shown to be important to orientate the reaction toward the production of oxygenates. The obtained results showed that mesoporous structure, uniform pore sizes and appropriate pore surface area were favorable for the selective oxidation of propane. The samples with moderate amount of potassium promoted the selectivity to the oxygenates.  相似文献   

16.
Mesoporous titania with high surface area and uniform pore size distribution was synthesized using surfactant templating method through a neutral [C13(EO)6–Ti(OC3H7)4] assembly pathway. The different gold content (1–5 wt.%) was supported on the mesoporous titania by deposition–precipitation (DP) method. The catalysts were characterized by X-ray diffraction, TEM, SEM, N2 adsorption analysis and TPR. The catalytic activity of gold supported mesoporous titania was evaluated for the first time in water–gas shift reaction (WGSR). The influence of gold content and particle size on the catalytic performance was investigated. The catalytic activity was tested at a wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. It is clearly revealed that the mesoporous titania is of much interest as potential support for gold-based catalyst. The gold/mesoporous titania catalytic system is found to be effective catalyst for WGSR.  相似文献   

17.
A number of Cu- and Fe-hydroxide containing catalysts, supported on oxide carriers, were prepared to provide the removal of 1,1-dimethylhydrazine from aqueous solutions via its oxidation by hydrogen peroxide and air oxygen. The Cu-containing samples as well as Fe/ZSM-5 are the most active catalysts in this reaction. The reaction products were analyzed by gas chromatography and UV–Vis spectroscopy. The effect of nature of the oxidizer and catalyst, pH and temperature on both the reaction rate and product composition was studied.  相似文献   

18.
We studied the oxidation reaction of phenol in aqueous and acetonitrile media under mild conditions, employing Cu-modified MCM-41 mesoporous catalysts. The stability of the catalysts under reaction conditions was confirmed by XRD, UV–VIS and FTIR techniques. Results obtained indicate that the selective oxidation of phenol with H2O2 by a radical substitution mechanism produces three main reaction products: catechol, hydroqinone and benzoquinone.  相似文献   

19.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

20.
The present review paper highlights on the recent progress in Japan on the hot gas cleanup of HCl, H2S and NH3 in raw fuel gas for coal-based, combined cycle power generation technologies. It has been shown that NaAlO2, prepared by mixing Na2CO3 solution with Al2O3 sol, can reduce HCl in an air-blown gasification gas from the initial 200 ppm to < 1 ppm at 400 °C, and it is tolerable for 200 ppm H2S. With regard to the removal of H2S, studies on the stability and durability of ZnFe2O4 sorbent in a simulated fuel gas have indicated the presence of an optimal operation temperature from the viewpoint of the suppression of both vaporization of metallic Zn and carbon formation from CO. High-performance TiO2-supported ZnFe2O4, which can decrease 1000 ppm H2S to < 1 ppm at 450 °C and 1 MPa, has been developed by the homogeneous precipitation method using a mixture of SiO2 sol and an aqueous solution of Zn and Fe nitrates, followed by mixing with TiO2. Although this sorbent is regenerable and durable, the sorption ability should be improved in a syngas-rich fuel gas from an O2-blown gasifier. A novel method to prepare carbon-supported ZnFe2O4 and CaFe2O4 by impregnating the corresponding nitrate solution with brown coal has been proposed, and the large desulfurization capacity of almost 100% has been achieved in the removal of 4000 ppm H2S around 450 °C. The present authors have demonstrated that an Australian limonite rich in α-FeOOH is practically feasible as the catalyst material for the decomposition of 2000 ppm NH3 in a syngas-rich gas of 25 vol.% H2/50 vol.% CO at 750 °C, because small amounts of H2O and CO2 added to the gas can work efficiently for inhibiting carbon deposition from the CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号