首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵茂林  袁慧  赵四化 《微电子学》2016,46(4):533-536
针对当前广泛应用的自适应滤波器,提出了一种改进的变步长NLMS自适应算法,在不增加计算复杂度的条件下获得了更好的收敛速度。在硬件实现过程中,利用FPGA并行处理的特点,采用自上而下的设计方法和流水线设计技术,获得了较好的滤波效果和较快的处理速度,完全满足自适应信号处理领域中实时性的要求。  相似文献   

2.
张炳婷  赵建平  陈丽  盛艳梅 《通信技术》2015,48(9):1010-1014
研究了最小均方误差(LMS)算法、归一化的最小均方(NLMS)算法及变步长NLMS算法在自适应噪声干扰抵消器中的应用,针对目前这些算法在噪声对消器应用中的缺点,将约束稳定性最小均方(CS-LMS)算法应用到噪声处理中,并进一步结合变步长的思想提出来一种新的变步长CS-LMS算法。通过MATLAB进行仿真分析,结果证实提出的算法与其他算法相比,能很好地滤除掉噪声从而得到期望信号,明显的降低了稳态误差,并拥有好的收敛速度。  相似文献   

3.
This paper presents an adaptive digital signal processing technique that cancels self-image interference due to frequency-independent, in-phase/quadrature-phase (I/Q) mismatch in zero-intermediate frequency (IF) direct-conversion receivers. The proposed technique, which is referred to as the normalized least-mean square adaptive self-image cancellation (NLMS-ASIC) algorithm, is an ASIC technique that controls the filter weight to minimize the power of the filter output signal using an NLMS type of weight-control mechanism. Some closed-form equations are derived for the mean-squared error (MSE), as well as the mean image-rejection ratio (IRR) of the proposed NLMS-ASIC algorithm. In particular, a step-size determination method is explained so that the requirements on the image-rejection performance and convergence time can be satisfied. The advantages of the proposed technique are demonstrated through computer simulations.   相似文献   

4.
针对NLMS和PNLMS滤波器对时变信道跟踪能力差的缺点,提出了一种同步长凸组合最大均方权值偏差(MSD,mean square deviation)算法。该算法将同步长的NLMS和PNLMS 2种不同类型的自适应滤波器进行凸组合,以最大均方权值偏差为准则,使新的滤波器能够在外界信道特性(稀疏、非稀疏和模糊态)时变的情况下,保持良好的随动性能,并在收敛的各个阶段均保持快速且稳定的均方特性。理论推导和仿真实验表明:该算法与NLMS、PNLMS和IPNLMS算法相比,在稀疏和非稀疏状态时能够保持四者中最快的收敛速度,并且在模糊状态时算法性能优于其余三者。另外,该算法仍保持较好的稳态均方性能。  相似文献   

5.
In this paper, a normalized least mean square (NLMS) adaptive filtering algorithm based on the arctangent cost function that improves the robustness against impulsive interference is proposed. Owing to the excellent characteristics of the arctangent cost function, the adaptive update of the weight vector stops automatically in the presence of impulsive interference. Thus, this eliminates the likelihood of updating the weight vector based on wrong information resulting from the impulsive interference. When the priori error is small, the NLMS algorithm based on the arctangent cost function operates as the conventional NLMS algorithm. Simulation results show that the proposed algorithm can achieve better performance than the traditional NLMS algorithm, the normalized least logarithmic absolute difference algorithm and the normalized sign algorithm in system identification experiments that include impulsive interference and abrupt changes.  相似文献   

6.
The normalized least mean square (NLMS) algorithm is an important variant of the classical LMS algorithm for adaptive linear filtering. It possesses many advantages over the LMS algorithm, including having a faster convergence and providing for an automatic time-varying choice of the LMS stepsize parameter that affects the stability, steady-state mean square error (MSE), and convergence speed of the algorithm. An auxiliary fixed step-size that is often introduced in the NLMS algorithm has the advantage that its stability region (step-size range for algorithm stability) is independent of the signal statistics. In this paper, we generalize the NLMS algorithm by deriving a class of nonlinear normalized LMS-type (NLMS-type) algorithms that are applicable to a wide variety of nonlinear filter structures. We obtain a general nonlinear NLMS-type algorithm by choosing an optimal time-varying step-size that minimizes the next-step MSE at each iteration of the general nonlinear LMS-type algorithm. As in the linear case, we introduce a dimensionless auxiliary step-size whose stability range is independent of the signal statistics. The stability region could therefore be determined empirically for any given nonlinear filter type. We present computer simulations of these algorithms for two specific nonlinear filter structures: Volterra filters and the previously proposed class of Myriad filters. These simulations indicate that the NLMS-type algorithms, in general, converge faster than their LMS-type counterparts  相似文献   

7.
It is shown that the normalized least mean square (NLMS) algorithm is a potentially faster converging algorithm compared to the LMS algorithm where the design of the adaptive filter is based on the usually quite limited knowledge of its input signal statistics. A very simple model for the input signal vectors that greatly simplifies analysis of the convergence behavior of the LMS and NLMS algorithms is proposed. Using this model, answers can be obtained to questions for which no answers are currently available using other (perhaps more realistic) models. Examples are given to illustrate that even quantitatively, the answers obtained can be good approximations. It is emphasized that the convergence of the NLMS algorithm can be speeded up significantly by employing a time-varying step size. The optimal step-size sequence can be specified a priori for the case of a white input signal with arbitrary distribution  相似文献   

8.
The step size of this adaptive filter is changed according to a gradient descent algorithm designed to reduce the squared estimation error during each iteration. An approximate analysis of the performance of the adaptive filter when its inputs are zero mean, white, and Gaussian noise and the set of optimal coefficients are time varying according to a random-walk model is presented. The algorithm has very good convergence speed and low steady-state misadjustment. The tracking performance of these algorithms in nonstationary environments is relatively insensitive to the choice of the parameters of the adaptive filter and is very close to the best possible performance of the least mean square (LMS) algorithm for a large range of values of the step size of the adaptation algorithm. Several simulation examples demonstrating the good properties of the adaptive filters as well as verifying the analytical results are also presented  相似文献   

9.
Recently, the normalized subband adaptive filter (NSAF) algorithm has attracted much attention for handling colored input signals. Based on the first-order Markov model of the optimal weight vector, this paper provides some insights for the convergence of the standard NSAF. Following these insights, both the step size and the regularization parameter in the NSAF are jointly optimized by minimizing the mean-square deviation. The resulting joint-optimization step size and regularization parameter algorithm achieves a good tradeoff between fast convergence rate and low steady-state error. Simulation results in the context of acoustic echo cancelation demonstrate good features of the proposed algorithm.  相似文献   

10.
一种改进的NLMS算法在声回波抵消中的应用   总被引:2,自引:0,他引:2  
收敛速度和残余均方误差是衡量最小均方算法性能的重要指标。在声回波抵消算法中,为了寻求收敛速度快和计算量小的自适应算法,在归一化最小均方误差算法基础上,把当前时刻以前的误差引入归一化收敛因子中得到一种新算法,可以减小信号样本波动对权重带来的影响。该算法比传统的归一化最小均方算法收敛性能更好,稳态失调也比其小。计算机仿真结果表明,新算法在自适应回波抵消中的综合性能要优于传统的归一化最小均方误差算法。  相似文献   

11.
This paper studies the mean and mean square convergence behaviors of the normalized least mean square (NLMS) algorithm with Gaussian inputs and additive white Gaussian noise. Using the Price’s theorem and the framework proposed by Bershad in IEEE Transactions on Acoustics, Speech, and Signal Processing (1986, 1987), new expressions for the excess mean square error, stability bound and decoupled difference equations describing the mean and mean square convergence behaviors of the NLMS algorithm using the generalized Abelian integral functions are derived. These new expressions which closely resemble those of the LMS algorithm allow us to interpret the convergence performance of the NLMS algorithm in Gaussian environment. The theoretical analysis is in good agreement with the computer simulation results and it also gives new insight into step size selection.  相似文献   

12.
Judicious selection of the step size parameter is crucial for adaptive algorithms to strike a good balance between convergence speed and misadjustment. The fuzzy step size (FSS) technique has been shown to improve the performance of the classical fixed step size and variable step size (VSS) normalised least mean square (NLMS) algorithms. The performance of the FSS technique in the context of subband adaptive equalisation is analysed and two novel block-based fuzzy step size (BFSS) strategies for the NLMS algorithm, namely fixed block fuzzy step size (FBFSS) and adaptive block fuzzy step size (ABFSS) are proposed. By exploiting the nature of gradient noise inherent in stochastic gradient algorithms, these strategies are shown to substantially reduce the computational complexity of the conventional FSS technique without sacrificing the convergence speed and steady-state performance. Instead of updating the step size at every iteration, the proposed techniques adjust the step size based on the instantaneous squared error once over a block length. Design methodology and guidelines that lead to good performance for the algorithms are given.  相似文献   

13.
郝欢  陈亮  张翼鹏 《信号处理》2013,29(8):1084-1089
传统神经网络通常以最小均方误差(LMS)或最小二乘(RLS)为收敛准则,而在自适应均衡等一些应用中,使用归一化最小均方误差(NLMS)准则可以使神经网络性能更加优越。本文在NLMS准则基础上,提出了一种以Levenberg-Marquardt(LM)训练的神经网络收敛算法。通过将神经网络的误差函数归一化,然后采用LM算法作为训练算法,实现了神经网络的快速收敛。理论分析和实验仿真表明,与采用最速下降法的NLMS准则和采用LM算法的LMS准则相比,本文算法收敛速度快,归一化均方误差更小,应用于神经网络水印系统中实现了水印信息的盲提取,能更好的抵抗噪声、低通滤波和重量化等攻击,性能平均提高了4%。   相似文献   

14.
In various signal-channel-estimation problems, the channel being estimated may be well approximated by a discrete finite impulse response (FIR) model with sparsely separated active or nonzero taps. A common approach to estimating such channels involves a discrete normalized least-mean-square (NLMS) adaptive FIR filter, every tap of which is adapted at each sample interval. Such an approach suffers from slow convergence rates and poor tracking when the required FIR filter is "long." Recently, NLMS-based algorithms have been proposed that employ least-squares-based structural detection techniques to exploit possible sparse channel structure and subsequently provide improved estimation performance. However, these algorithms perform poorly when there is a large dynamic range amongst the active taps. In this paper, we propose two modifications to the previous algorithms, which essentially remove this limitation. The modifications also significantly improve the applicability of the detection technique to structurally time varying channels. Importantly, for sparse channels, the computational cost of the newly proposed detection-guided NLMS estimator is only marginally greater than that of the standard NLMS estimator. Simulations demonstrate the favourable performance of the newly proposed algorithm.  相似文献   

15.
在综合考虑自适应滤波算法设计中收敛速度、稳态误差、计算复杂度和跟踪性能等指标的基础上,该文提出一种类箕舌线函数的变步长归一化自适应滤波算法,用类箕舌线函数代替Sigmoid函数作为步长迭代公式,引入基于相关误差的变步长调整原则,在大大增强算法稳定性的同时大幅度提升了算法的收敛速度、跟踪性能,减小了算法的计算复杂度.在M...  相似文献   

16.
为了弥补传统的LMS算法采用固定步长无法解决收敛速度和稳态误差之间矛盾的缺陷,改进了失调系数,提出了一种改进的LMS算法用于求解自适应波束赋形的最佳权值。理论分析证实归一化的LMS算法可以通过采用一个可变因子使瞬时输出误差最小化。仿真结果表明,归一化的LMS算法采用了可变步长比传统LMS算法收敛快,稳态误差和失调相对于LMS都有所改善。  相似文献   

17.
通过分析NLMS[1]和VSSLMS[7]两种算法控制时变步长的思想及这两种算法的优缺点,文章提出了一种改进的归一化变步长算法,它同时使用输入信号积累和瞬时误差来控制步长更新.该算法的优越性在于收敛速度快,尤其在系统跳变时也能快速收敛,可很好地应用于自适应预测系统中.理论分析与计算机仿真结果都表明该算法收敛速度快、失调量小、稳定性好, 且在低信噪比的环境中比其他同类算法有更好的性能.  相似文献   

18.
Parallel interference cancellation (PIC) is a promising detection technique to suppress multiple access interference (MAI) for up-link direct-sequence CDMA (DS-CDMA) systems. Adaptive PICs are attractive due to its low implementation complexities and good performance. In this paper, we propose a general framework for analyzing the bit error rate (BER) and convergence performance of the normalized LMS (NLMS) based PIC. To further improve the convergence speed of the PIC system, a novel switch-mode noise-constrained NLMS (SNC-NLMS) algorithm for the adaptive multistage PIC (AMPIC) is also proposed. Simulation results show that the analytical results are reasonably accurate and the SNC-NLMS AMPIC outperforms the NLMS-based one, if the algorithm parameters are properly chosen.  相似文献   

19.
A new framework for designing robust adaptive filters is introduced. It is based on the optimization of a certain cost function subject to a time-dependent constraint on the norm of the filter update. Particularly, we present a robust variable step-size NLMS algorithm which optimizes the square of the a posteriori error. We also show the link between the proposed algorithm and another one derived using a robust statistics approach. In addition, a theoretical model for predicting the transient and steady-state behavior and a proof of almost sure filter convergence are provided. The algorithm is then tested in different environments for system identification and acoustic echo cancelation applications.  相似文献   

20.
This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号