首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
2.
A mechanism is presented concerning electrolysis of deuteriated water with a palladium cathode that is infused with deuterium (palladium deuteride) resulting in the formation of small amounts of radioactive tritium, excess energy (more than allowed by EMF chemistry alone) and the concomitant liberation of 4He. These net electron catalyzed nuclear chemical reactions (2H + 2H + e?  4He + e? + heat) and (2H + 1H + e?  3H + e?) appear to be a result of respectively four and three isotope effects acting in combination with each other in a non-linear (chaotic) fashion to produce a metastable nuclear isomer of hydrogen-4 or hydrogen-3. The four isotope effects begin with the influx of electrons into the –PdDPdD Bravais lattice conduction band and consequent preferred rupture of individual weak Pd-D bonds (over those of PdH) in the cathode liberating D2. This is followed by the newly freed deuterium capturing an electron yielding a di-neutron (onon). The onon then reacts with a deuterium or hydrogen (from protic impurity in the lattice) via phonon enforced quantum tunneling resulting in 4mH or 3H respectively. The 4mH quickly undergoes nuclear internal conversion to form 4He. These reactions involve the weak force (Feynman Diagrams are shown), but they take place in simple electrochemical systems that are normally thought of in terms of the electromagnetic forces only. The combined influence of the four isotope effects explains thousands of, what were considered, anomalous observations by top electrochemical researchers. The newly described mechanistic effects involve a very important and almost forgotten intermediate (the di-neutron) and may even involve unique safety concerns.  相似文献   

3.
To achieve the better electrocatalytic activity and stability of Pd-base catalysts for ethylene glycol and glycerol oxidation reactions, a novel Pd-base binary PdCo oxides nanoparticles (PdPdO-CoOx) was synthesized by in-situ oxidation of PdCo precursor. The strategy was simple, mild, green and efficient. The prepared nanoparticles exhibited a mutually connected, fused irregular nanoparticles in TEM. The as-synthesized PdPdO-CoOx (1:4) nanoparticles displayed prominent catalytic activity (5.82 A mgPd?1 for ethylene glycol and 5.16 A mgPd?1 for glycerol) for ethylene glycol and glycerol oxidation reactions in alkaline solution compared to the commercial Pt/C (1.64 A mgPt?1 for ethylene glycol and 1.48 A mgPt?1 for glycerol) catalyst. The improved electrocatalytic activity of PdPdO-CoOx catalyst mainly ascribes to the producing Strong Metal-Support Interactions (SMSI) between PdO-CoOx and Pd nanoparticles, the synergistic effect between PdO and CoOx and the presence of CoOx promoved hydroxyl adsorption at lower potentials. Combined with the simple synthetic method, lower cost and good performance, PdPdO-CoOx is a promising catalyst for direct fuel cells.  相似文献   

4.
In order to decrease oxide growth kinetics, maintain suitable conductivity and prevent Cr-volatilization of AISI 430 stainless steels (430 SS) as the interconnect for intermediate temperature solid oxide fuel cells (SOFCs), a CoNiO spinel oxide protective coating has been successfully fabricated on the 430 SS specimen using a simple and cheap process with two steps: 1) electroplation of CoNi alloy layer and 2) pre-oxidation treatment to convert the CoNi alloy into spinel oxide. The CoNiO spinel layer on the 430 SS (CoNiO 430 SS) is dense and uniform with 8–10 μm thickness. And the CoNiO spinel oxide protective coating consists of a main face-centered-cubic (fcc) NiCo2O4 spinel phase and a minor fcc NiO phase. Compared with bare 430 SS, the oxidation resistance and the conductivity of the CoNiO 430 SS have been improved remarkably under simulated typical SOFC operating cathode conditions (at 800 °C in air). After an isothermal oxidation test at 800 °C, the area specific resistance (ASR) of CoNiO 430 SS is much lower and stable (0.1 Ω cm2 for 100 h and 0.9 Ω cm2 for 600 h) than that of bare 430 SS (1.2 Ω cm2 for 100 h and 2.4 Ω cm2 for 600 h). These performances of CoNiO 430 SS imply that it can be a promising candidate interconnect for solid oxide fuel cell.  相似文献   

5.
6.
A novel photocatalyst comprises of ZrO2TiO2 immobilized on reduced graphene oxide (rGO) – a ternary heterojunction (ZrO2TiO2/rGO) was synthesized by using facile chemical method. The nanocomposite was prepared with a strategy to achieve better utilization of excitons for catalytic reactions by channelizing from metal oxide surfaces to rGO support. TEM and XRD analysis results revealed the heterojunction formed between ZrO2 and single crystalline anatase TiO2. The mesoporous structure of ZrO2TiO2 was confirmed using BET analysis. The red shift in absorption edge position of ZrO2TiO2/rGO photocatalyst was characterized by using diffuse reflectance UV–Visible spectra. ZrO2TiO2/rGO showed greater interfacial charge transfer efficiency than ZrO2TiO2, which was evidenced by well suppressed PL intensity and high photocurrent of ZrO2TiO2/rGO. The suitable band gap of 1.0 wt% ZrO2TiO2/rGO facilitated the utilization of solar light in a wide range by responding to the light of energy equal to as well as greater than 2.95 eV by the additional formation of excited high-energy electrons (HEEs). ZrO2TiO2/rGO showed the enhanced H2 production than TiO2/rGO, which revealed the role of ZrO2 for the effective charge separation at the heterojunction and the solar light response. The optimum loading of 1.0 wt% of ZrO2 and rGO on TiO2 showed the highest photocatalytic performance (7773 μmolh?1gcat?1) for hydrogen (H2) production under direct solar light irradiation.  相似文献   

7.
8.
9.
10.
The synthesis of nitrogen doped orthorhombic niobium oxide nanoplates/reduced graphene oxide composites (NNb2O5/rGO) and their photocatalytic activity towards hydrogen generation from water and H2S under natural sunlight has been demonstrated, uniquely. Nanostructured NNb2O5/rGO is synthesized by in situ wet chemical method using urea as a source of nitrogen and optimized by varying percentage of graphene oxide (GO). X?ray diffraction (XRD) study reveals that NNb2O5 have orthorhombic crystal structure with crystalline size, 35 nm. Further, X?ray photoelectron spectroscopy (XPS) confirm the presence of nitrogen and rGO in NNb2O5/rGO nanocomposite. Morphological features of (NNb2O5/rGO) were examined by FE?SEM and FE?TEM showed Nb2O5 nanoplates of diameter 25–40 nm anchored on 2D rGO. Diffuse reflectance spectra depicts the extended absorbance in the visible region with band gap of 2.2 eV. Considering the band gap in the visible region, the photocatalytic hydrogen generation from water and H2S has been performed. The 1 wt % rGO hybridized NNb2O5 (S2) exhibited superior photocatalytic hydrogen generation (537 μmol/h) from water and (1385 μmol/h) from H2S under sunlight. The improved photocatalytic activity is attributed due to an extended absorbance in the visible region, modified electronic structure upon doping and formation of well defined NNb2O5/rGO interface, provides large surface area, accelerates the supression of electron and hole pairs recombination rate. In our opinion, this works may provides facile route for energy efficient and economic approach for fabrication of NNb2O5/rGO nanocomposites as a visible light active photocatalyst.  相似文献   

11.
12.
For alloy design of hydrogen permeable membrane, it is important to control pressure–composition–isotherm (PCT curve) in an appropriate manner in order to obtain high hydrogen permeability with strong resistance to hydrogen embrittlement. Based on this concept, V-based alloy membranes are designed under some given pressure conditions at a temperature in view of the partial molar enthalpy change, ΔH¯0.2, and entropy change, ΔS¯0.2, of hydrogen for hydrogen dissolution. It is demonstrated that the PCT curve can be controlled very precisely in view of ΔH¯0.2 and ΔS¯0.2. Also, the required membrane area to obtain 300 Nm3 h?1 of hydrogen flow is estimated. It is found that, in view of the membrane area, it is favorable to apply at least 400 kPa of hydrogen pressure at feed side.  相似文献   

13.
《Journal of power sources》2006,157(2):681-687
Oxide scale formations on FeCr alloy interconnects were investigated in anode gas (mixtures of CH4 and H2O) atmospheres for solid oxide fuel cells. The silicon concentration in FeCr alloy changed the microstructures of oxide scales, elemental distribution and oxide scale growth rates. Oxide scale is composed of the following phases from surface to inner oxides: FeMn spinel, Cr2O3, oxide scale/alloy interface and internal oxides of Si and Al. With decreasing the Si concentration from 0.4 to 0.01 mass%, formation of thin Si and Mn layer was observed inside the FeCr alloy. Oxide scale growth rate constants decreased by lowering the Si concentration in FeCr alloy from 4.2 × 10−18 to 2.1 × 10−18 m2 s−1 at 1073 K. Diffusivity of Fe and Cr was changed by the concentration of Si in FeCr alloy, which affects the growth rates of oxide scale. The electrical conductivity of oxidized FeCr alloy shows almost same level regardless the Si concentration (in the orders of 10 S cm−2 at 1073 K).  相似文献   

14.
The rate constant k2 has been measured in flames of H2 + O2 + N2 for the ionization of alkali metal atoms M in collisions with flame species X in
M+XM++e?+X
. Results are compared with every previously reported measurement of k2 in similar flames for each alkali metal. It is concluded that
k2=(9.9±2.7)×10?9T1/2exp?(?V/RT)
, ml molecule ?1 sec?1, where V is the ionization potential of the alkali metal atom and T the temperature. k2 does not depend on flame composition and is the same for each alkali to a good approximation.The third-order recombination rate constant k?2 for the reverse of (II) can be written as
k?2=(4.1±1.1)×10?24T?1
, ml2 molecule?2 sec?1. There is no significant dependence of k?2 on flame composition or on which alkali metal is considered. These facts enable the rates of the forward and reverse processes in (II) to be estimated in flames generally.  相似文献   

15.
Hydrogen embrittlement causes engineering components to fail unexpectedly. Maraging 300 steel was hydrogen charged and subjected to slow strain rate tensile test until fracture. Electron backscatter diffraction analysis of fractured specimen revealed that cracks initially propagated intergranulary along prior-austenite grain boundaries. When cracks faced martensitic {111}α planes parallel to normal direction (ND) they were deflected and continued to propagate transgranulary through {001}α//ND planes. Finally, cracks were arrested by {111}α//ND planes. Crystallographic planes on which cracks propagate/are arrested, correlate well with planes that exhibit highest/lowest magnitude of lattice strain determined during tensile loading using in situ synchrotron X-ray diffraction.  相似文献   

16.
17.
18.
19.
《Journal of power sources》2006,158(2):1348-1357
Steam and autothermal reforming reactions of LPG (propane/butane) over high surface area CeO2 (CeO2 (HSA)) synthesized by a surfactant-assisted approach were studied under solid oxide fuel cell (SOFC) operating conditions. The catalyst provides significantly higher reforming reactivity and excellent resistance toward carbon deposition compared to the conventional Ni/Al2O3. These benefits of CeO2 are due to the redox property of this material. During the reforming process, the gas–solid reactions between the hydrocarbons present in the system (i.e. C4H10, C3H8, C2H6, C2H4, and CH4) and the lattice oxygen (OOx) take place on the ceria surface. The reactions of these adsorbed surface hydrocarbons with the lattice oxygen (CnHm + OOx  nCO + m/2(H2) + VO + 2e′) can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reactions (CnHm  nC + 2mH2). Afterwards, the lattice oxygen (OOx) can be regenerated by reaction with the steam present in the system (H2O + VO + 2e′  OOx + H2). It should be noted that VO denotes as an oxygen vacancy with an effective charge 2+.At 900 °C, the main products from steam reforming over CeO2 (HSA) were H2, CO, CO2, and CH4 with a small amount of C2H4. The addition of oxygen in autothermal reforming was found to reduce the degree of carbon deposition and improve product selectivities by completely eliminating C2H4 formation. The major consideration in the autothermal reforming operation is the O2/LPG (O/C molar ratio) ratio, as the presence of a too high oxygen concentration could oxidize the hydrogen and carbon monoxide produced from the steam reforming. A suitable O/C molar ratio for autothermal reforming of CeO2 (HSA) was 0.6.  相似文献   

20.
Thin-film rechargeable batteries with a lithium metal anode, an amorphous inorganic electrolyte, and cathodes of amorphous V2O5 and crystalline and amorphous LixMn2O4 have been fabricated and characterized. The performance of the thin-film cells was evaluated at different current densities and, in the case of LiV5, at several temperatures. Electrical measurements show that the current density of the thin-film cells is limited by the lithium-ion mobility in the cathodes. The resistance of LiLixMn2O4 cells with crystalline cathodes is about two orders of magnitude lower than that of LiV5 cells with amorphous cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号