首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. Single chondrocytes and chondrons isolated from bovine articular cartilage were compressed by micromanipulation between two parallel surfaces in order to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during compression to various deformations and then holding. When the nominal strain at the end of compression was 50 per cent, force relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant when the nominal strain was 30 per cent or lower. The viscoelastic behaviour might be due to the mechanical response of the cell cytoskeleton and/or nucleus at higher deformations. A finite-element analysis was applied to simulate the experimental force-displacement/time data and to obtain mechanical property parameters of the chondrocytes and chondrons. Because of the large strains in the cells, a nonlinear elastic model was used for simulations of compression to 30 per cent nominal strain and a nonlinear viscoelastic model for 50 per cent. The elastic model yielded a Young''s modulus of 14 ± 1 kPa (mean ± s.e.) for chondrocytes and 19 ± 2 kPa for chondrons, respectively. The viscoelastic model generated an instantaneous elastic modulus of 21 ± 3 and 27 ± 4 kPa, a long-term modulus of 9.3 ± 0.8 and 12 ± 1 kPa and an apparent viscosity of 2.8 ± 0.5 and 3.4 ± 0.6 kPa s for chondrocytes and chondrons, respectively. It was concluded that chondrons were generally stiffer and showed less viscoelastic behaviour than chondrocytes, and that the PCM significantly influenced the mechanical properties of the cells.  相似文献   

2.
Scanning electron microscopy (SEM) was used to observe the macroscopic, microscopic, and cross‐sectional structures of the claws of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae), and a mathematical model of a claw was used to investigate the structure–function relationships. To improve the quality of the SEM images, a non‐local means (NLM) algorithm and an improved NLM algorithm were applied. After comparison and analysis of five classical edge‐detection algorithms, the boundaries of the structural features of the claw were extracted based on a B‐spline wavelet algorithm, and the results showed that the variable curvature of the beetle claw enhances its adhesion force and improves its strength. Adhesion models of the claw were established, and the mechanical properties of its biomaterials were measured using nanoindentation. Considering that the presence of water can affect the hardness and Young''s modulus, both ‘dry’ and ‘wet’ samples were examined. For the dry samples, the hardness and Young''s modulus were 0.197 ± 0.074 GPa and 1.105 ± 0.197 GPa, respectively, whereas the respective values for the wet samples were both lower at 0.071 ± 0.030 GPa and 0.693 ± 0.163 GPa. This study provides data that can inform the design of climbing robots.  相似文献   

3.
徐峥  段俊丽  钱梦騄  程茜 《声学技术》2016,35(3):239-242
血管内皮细胞的功能与许多疾病间存在关联,但现在对其功能好坏的定量描述仍十分少见。该文以内皮细胞的弹性作为衡量其功能的一个标准。通过理论建立压痕测量杨氏模量的计算方法,并利用扫描探针显微镜从实验上得到了正常及过氧化氢处理过的人脐静脉内皮细胞的杨氏模量。发现过氧化氢处理后细胞的杨氏模量升高,表明通过杨氏模量来表征细胞活性是可行的。  相似文献   

4.
Haemodynamic forces applied at the apical surface of vascular endothelial cells (ECs) provide the mechanical signals at intracellular organelles and through the inter-connected cellular network. The objective of this study is to quantify the intracellular and intercellular stresses in a confluent vascular EC monolayer. A novel three-dimensional, multiscale and multicomponent model of focally adhered ECs is developed to account for the role of potential mechanosensors (glycocalyx layer, actin cortical layer, nucleus, cytoskeleton, focal adhesions (FAs) and adherens junctions (ADJs)) in mechanotransmission and EC deformation. The overriding issue addressed is the stress amplification in these regions, which may play a role in subcellular localization of mechanotransmission. The model predicts that the stresses are amplified 250–600-fold over apical values at ADJs and 175–200-fold at FAs for ECs exposed to a mean shear stress of 10 dyne cm−2. Estimates of forces per molecule in the cell attachment points to the external cellular matrix and cell–cell adhesion points are of the order of 8 pN at FAs and as high as 3 pN at ADJs, suggesting that direct force-induced mechanotransmission by single molecules is possible in both. The maximum deformation of an EC in the monolayer is calculated as 400 nm in response to a mean shear stress of 1 Pa applied over the EC surface which is in accord with measurements. The model also predicts that the magnitude of the cell–cell junction inclination angle is independent of the cytoskeleton and glycocalyx. The inclination angle of the cell–cell junction is calculated to be 6.6° in an EC monolayer, which is somewhat below the measured value (9.9°) reported previously for ECs subjected to 1.6 Pa shear stress for 30 min. The present model is able, for the first time, to cross the boundaries between different length scales in order to provide a global view of potential locations of mechanotransmission.  相似文献   

5.
Spaceflight is known to cause ophthalmic changes in a condition known as spaceflight-associated neuro-ocular syndrome (SANS). It is hypothesized that SANS is caused by cephalad fluid shifts and potentially mild elevation of intracranial pressure (ICP) in microgravity. Head-down tilt (HDT) studies are a ground-based spaceflight analogue to create cephalad fluid shifts. Here, we developed non-invasive magnetic resonance imaging (MRI)-based techniques to quantify ophthalmic structural changes under acute 15° HDT. We specifically quantified: (i) change in optic nerve sheath (ONS) and optic nerve (ON) cross-sectional area, (ii) change in ON deviation, an indicator of ON tortuosity, (iii) change in vitreous chamber depth, and (iv) an estimated ONS Young''s modulus. Under acute HDT, ONS cross-sectional area increased by 4.04 mm2 (95% CI 2.88–5.21 mm2, p < 0. 000), while ON cross-sectional area remained nearly unchanged (95% CI −0.12 to 0.43 mm2, p = 0.271). ON deviation increased under HDT by 0.20 mm (95% CI 0.08–0.33 mm, p = 0.002). Vitreous chamber depth decreased under HDT by −0.11 mm (95% CI −0.21 to −0.03 mm, p = 0.009). ONS Young''s modulus was estimated to be 85.0 kPa. We observed a significant effect of sex and BMI on ONS parameters, of interest since they are known risk factors for idiopathic intracranial hypertension. The tools developed herein will be useful for future analyses of ON changes in various conditions.  相似文献   

6.
Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12–91 ± 7 mol%) of introduced moieties governed the structure–property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51–1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7–168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2–387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care.  相似文献   

7.
Combinatorial magnetron sputter deposition from elemental targets was used to create Fe–B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young''s modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films.  相似文献   

8.
Micromorphology and nanoindentation properties of sputtered aluminum thin films are presented. The field emission scanning electron microscope, atomic force microscopy (AFM) and nanoindentation results are presented for films prepared at a substrate temperature ranging between 44.5 °C and 100 °C. A multifractal approach on the microstructure is presented to comprehend the micromorphology of the films. The roughness decreases, whereas fractal dimension increases as the temperature increases. The hardness and Young's modulus do not exhibit any predictable trend. Hardness and Young's modulus exhibit a linear relationship.  相似文献   

9.
生物组织的弹性是诊断其是否发生病变的重要依据,杨氏模量是反映组织弹性的重要参数。以Labview为软件平台结合数据采集和运动控制等硬件设备,研制了一套测量弹性模量的毫米压痕弹性仪。以市购冷鲜牛肉、猪肉、猪肝和猪肾为试样,测量了球形压头向试样施加的负载力和对应的试样压痕深度,在对测量数据进行校准的基础上,利用基于赫兹接触力学模型的压头半径R、作用力F、压痕深度δ与试样等效杨氏模量E~*间的解析关系,得到各试样的等效杨氏模量。实验结果表明,测得的组织试样等效杨氏模量数值与文献基本相符,所设计的毫米级压痕法测试装置可用于生物组织等效杨氏模量的检测。  相似文献   

10.
Mechanical properties of single cells are of increasing interest both from a fundamental cell biological perspective and in the context of disease diagnostics. In this respect, atomic force microscopy (AFM) has become a powerful tool for imaging and assessing mechanical properties of biological samples. However, while these tests are typically carried out on chemically fixed cells, the most important data is that on living cells. The present study applies AFM technique to assess the Young's modulus of two cell lines: mouse embryonic fibroblasts (NIH/3T3) and human epithelial cancer cells (SW-13). Both living cells and those fixed with paraformaldehyde were investigated. This analysis quantifies the difference between Young's modulus for these two conditions and provides a coefficient to relate them. Knowing the relation between Young's modulus of living and fixed cells, allows carrying out and comparing data obtained during steady-state measurements on fixed cells that are more frequently available in the clinical and research settings and simpler to maintain and probe.  相似文献   

11.
Migration of the Pachycondyla marginata ant is significantly oriented at 13° with respect to the geomagnetic north–south axis. On the basis of previous magnetic measurements of individual parts of the body (antennae, head, thorax and abdomen), the antennae were suggested to host a magnetoreceptor. In order to identify Fe3+/Fe2+ sites in antennae tissue, we used light microscopy on Prussian/Turnbull''s blue-stained tissue. Further analysis using transmission electron microscopy imaging and diffraction, combined with elemental analysis, revealed the presence of ultra-fine-grained crystals (20–100 nm) of magnetite/maghaemite (Fe3O4/γ-Fe2O3), haematite (α-Fe2O3), goethite (α-FeOOH) besides (alumo)silicates and Fe/Ti/O compounds in different parts of the antennae, that is, in the joints between the third segment/pedicel, pedicel/scape and scape/head, respectively. The presence of (alumo)silicates and Fe/Ti/O compounds suggests that most, if not all, of the minerals in the tissue are incorporated soil particles rather than biomineralized by the ants. However, as the particles were observed within the tissue, they do not represent contamination. The amount of magnetic material associated with Johnston''s organ and other joints appears to be sufficient to produce a magnetic-field-modulated mechanosensory output, which may therefore underlie the magnetic sense of the migratory ant.  相似文献   

12.
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young''s modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.  相似文献   

13.
The zona pellucida (ZP) is the spherical layer that surrounds the mammalian oocyte. The physical hardness of this layer plays a crucial role in fertilization and is largely unknown because of the lack of appropriate measuring and modelling methods. The aim of this study is to measure the biomechanical properties of the ZP of human/mouse ovum and to test the hypothesis that Young''s modulus of the ZP varies with fertilization. Young''s moduli of ZP are determined before and after fertilization by using the micropipette aspiration technique, coupled with theoretical models of the oocyte as an elastic incompressible half-space (half-space model), an elastic compressible bilayer (layered model) or an elastic compressible shell (shell model). Comparison of the models shows that incorporation of the layered geometry of the ovum and the compressibility of the ZP in the layered and shell models may provide a means of more accurately characterizing ZP elasticity. Evaluation of results shows that although the results of the models are different, all confirm that the hardening of ZP will increase following fertilization. As can be seen, different choices of models and experimental parameters can affect the interpretation of experimental data and lead to differing mechanical properties.  相似文献   

14.
Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.  相似文献   

15.
Cell contraction force plays an important role in wound healing, inflammation, angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 µM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 µM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen, while the Young''s modulus of the gel decreases due to the gel degradation.  相似文献   

16.
This paper presents the results of a microelectromechanical systems (MEMS) Young’s modulus and step height round robin experiment, completed in April 2009, which compares Young’s modulus and step height measurement results at a number of laboratories. The purpose of the round robin was to provide data for the precision and bias statements of two \ related Semiconductor Equipment and Materials International (SEMI) standard test methods for MEMS. The technical basis for the test methods on Young’s modulus and step height measurements are also provided in this paper.Using the same test method, the goal of the round robin was to assess the repeatability of measurements at one laboratory, by the same operator, with the same equipment, in the shortest practical period of time as well as the reproducibility of measurements with independent data sets from unique combinations of measurement setups and researchers. Both the repeatability and reproducibility measurements were done on random test structures made of the same homogeneous material.The average repeatability Young’s modulus value (as obtained from resonating oxide cantilevers) was 64.2 GPa with 95 % limits of ± 10.3 % and an average combined standard uncertainty value of 3.1 GPa. The average reproducibility Young’s modulus value was 62.8 GPa with 95 % limits of ± 11.0 % and an average combined standard uncertainty value of 3.0 GPa.The average repeatability step height value (for a metal2-over-poly1 step from active area to field oxide) was 0.477 μm with 95 % limits of 7.9 % and an average combined standard uncertainty value of 0.014 μm. The average reproducibility step height value was 0.481 μm with 95 % limits of ± 6.2 % and an average combined standard uncertainty value of 0.014 μm.In summary, this paper demonstrates that a reliable methodology can be used to measure Young’s modulus and step height. Furthermore, a micro and nano technology (MNT) 5-in-1 standard reference material (SRM) can be used by industry to compare their in-house measurements using this methodology with NIST measurements thereby validating their use of the documentary standards.  相似文献   

17.
Most molecular dynamics (MD) simulations for single wall carbon nanotubes (SWCNT) are based on a perfect molecular material structure. The presence of vacancy defects in SWCNTs could lead to deviations from this perfect structure thus affecting the predicted properties. The present paper investigates the effect of carbon vacancy defects in the molecular structure of SWCNT on the Young's modulus of the SWCNT using MD simulations performed via Accelrys and Materials Studio. The effect of the position of the defects in the nanotube ring and the effect of the number of defects on the Young's modulus are studied. The studies indicate that for an enclosed defect with the same shape in a SWCNT structure, its position did not cause any change in the Young's modulus. However, as the number of defects increased, the predicted Young's modulus was found to decrease. For a 10 ring (6, 6) SWCNT, six vacancy defects (corresponding to a defect percentage of 2.5%) reduced the Young's modulus by 13.7%.  相似文献   

18.
The Young's modulus is an essential factor for improving turbine blade design. The present study aims to obtain the flexural frequencies (f1) and corresponding dynamic Young's modulus (Ed) of Ni-based single-crystal DD6 across a temperature range of 25–1200 °C using a nondestructive dynamic testing method. The relationship between the elastic constants and various crystal orientations is derived by employing the transformation of the elastic matrix. In addition, finite element (FE) simulation is conducted to calculate the flexural frequency (f1) of the [001] crystal orientation. The findings indicate that the dynamic Young's modulus (Ed) decreases as the temperature increases within the range of 25–1200 °C. Furthermore, the Ed values for different crystal orientations follow the trend: Ed[1] < Ed[11] < Ed[111]. This suggests significant anisotropy in the material. The normalized model, matrix transformation calculation method, and finite element method demonstrate high accuracy in predicting the elastic modulus of DD6, as evidenced by the good correspondence between the fitting curves obtained using the normalization method and the test results. These results have practical applications in engineering, particularly in turbine blade design and other applications, and serve as valuable references for mechanical property testing and finite element simulations.  相似文献   

19.
ABSTRACT

Standard tensile strength and peel adhesion tests were carried out to investigate interactions of pressure-sensitive adhesives (PSAs) with several backing foils used for transdermal patches. Seven branded transdermal patches (Alora®, Cutanum®, Estraderm MX® 50, Estraderm TTS® 50, Fem7®-50 μg, Menorest®, Oesclim®) were included in the investigation. Their skin adhesion measured in several clinical trials was compared with the results of the laboratory measurements according to PSTC-1 (Peel Adhesion for Single Coated Tapes 180° Angle, Pressure Sensitive Tape Council, Illinois, 1996), such as Young's modulus at 3% elongation and peel adhesion to stainless steel. Data obtained for the PSA-coated backings (laminates) show increasing elasticity with increasing PSA thickness. Interactions of PSAs with backing foil became evident in significant changes in Young's modulus by low PSA thickness, as seen for the silicone adhesive. The Young's moduli of the laminates were found to be influenced not only by the elasticity of the backing foil but also by the chemical structure of the PSA. There was no correlation between the elasticity and peel adhesion of both the laminates and the branded patches. Likewise, for the branded patches the peel adhesion to stainless steel does not correlate with skin adhesion values obtained from clinical trials.

The Young's modulus of the branded patches was between 4 N/mm2 (Oesclim®) and 501 N/mm2 (Fem7®). For the branded transdermal patches no correlation was found between Young's modulus and both the peel force on stainless steel and the skin adhesion reported in studies.  相似文献   

20.
The current research and development of metallic materials used for medicine and dentistry is reviewed. First, the general properties required of metals used in medical devices are summarized, followed by the needs for the development of α + β type Ti alloys with large elongation and β type Ti alloys with a low Young''s modulus. In addition, nickel-free Ni–Ti alloys and austenitic stainless steels are described. As new topics, we review metals that are bioabsorbable and compatible with magnetic resonance imaging. Surface treatment and modification techniques to improve biofunctions and biocompatibility are categorized, and the related problems are presented at the end of this review. The metal surface may be biofunctionalized by various techniques, such as dry and wet processes. These techniques make it possible to apply metals to scaffolds in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号