首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A numerical model of a solar downdraft gasifier of biomass char (biochar) with steam based on the systems kinetics is developed. The model calculates the dynamic and steady state profiles, predicting the temperature and concentration profiles of gas and solid phases, based on the mass and heat balances. The Rosseland equation is used to calculate the radiative transfer within the bed. The char reactivity factor (CFR) is taken into account with an exponential variation. The bed heating dynamics as well as the steam velocity effects are tested. The model results are compared with different experimental results from a solar packed bed gasifier, and the temperature profile is compared to an experimental downdraft gasifier. Hydrogen is the principal product followed by carbon monoxide, the carbon dioxide production is small and the methane production is negligible, indicating a high quality syngas production. By applying the temperature gradient theory in the steam-only gasification process for a solar gasifier design, a solar downdraft gasifier improves the energy conversion efficiency by over 20% when compared to a solar packed bed gasifier. The model predictions are in good agreement with the experimental results found in the literature.  相似文献   

2.
A phenomenological model of downdraft gasification under steady state operation is developed based on previously published values for the reaction kinetics in the reduction zone. The model predicts a product gas with a composition similar to that found experimentally, although the model over-predicts the methane concentration. The accuracy of the model is limited by the availability of data on the initial conditions at the top of the reduction zone.  相似文献   

3.
In this paper, a 3D numerical simulation of a downdraft plasma gasifier with plasma reactions is conducted. The effects of the equivalence ratio (ER) on the syngas properties in the presence of the plasma reactions are investigated. The boundary conditions for the air plasma inlet of the gasifier are obtained from the outlet of a 10 kW microwave plasma generator. A conventional gasification analysis is carried out to validate the model. In the second part of the study, plasma reactions are added to conventional gasification equations. Mole fractions of the constituents of the syngas and temperature contours are obtained for different ER values. According to the results, with the increase of ER from 0.20 to 0.45 the lower heating value of the produced syngas decreased from 1536.6 kcal/m3 to 751.8 kcal/m3.  相似文献   

4.
A model of a downdraft gasifier has been developed based on chemical equilibrium in the pyro‐oxidation zone and finite rate kinetic‐controlled chemical reactions in the reduction zone. The char reactivity factor (CRF) in the reduction zone, representing the number of active sites on the char and its degree of burn out, has been optimized by comparing the model predictions against the experimental results from the literature. The model predictions agree well with the temperature distribution and exit gas composition obtained from the experiments at CRF=100. A detailed parametric study has been performed at different equivalence ratios (between 2 and 3.4) and moisture content (in the range of 0–40%) in the fuel to obtain the composition of the producer gas as well as its heating value. It is observed that the heating value of the producer gas increases with the increase in the equivalence ratio and decrease in the biomass moisture content. The effect of divergence angle of the reduction zone geometry (in the range of 30–150°) on the temperature and species concentration distributions in the gasifier has been studied. An optimum divergence angle, giving the best quality of the producer gas, has been identified for a particular height of the reduction zone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Syngas production from biomass resources suggest considerable privileges to attain energy sustainability in future. Design and control strategies are essential to extend the technology of biomass gasifiers, which require reliable model developments. The overarching contribution of this study is to develop and evaluate a three-stage biomass gasifier model. The model consists of three successive sub-models for drying and pyrolysis, partial oxidation and char reduction reactors. The pyrolysis of raw material is simulated based on the ligno-cellulosic structure of the biomass by adopting comprehensive kinetic rate modelling approach. The partial oxidation sub-model is built by axis-symmetric 2D transport equations including detailed chemical scheme. Char reduction sub-model is extended based on axis-symmetric 2D DPM model accompanied by appropriate chemical kinetic scheme considering heterogeneous and homogeneous reactions. Accuracy of each sub-model is separately verified by comparison with available numerical and experimental data. Moreover, the correctness and predictability of the complete gasifier model is evaluated using two experimental reports. For both cases, investigations demonstrate high resolution agreement between the results of the developed model and available experimental measurements both thermally and chemically. Furthermore, a parametric analysis is conducted to investigate the gasifier performance against the variations of the main system operating parameters including the type of the feeding biomass and its moisture content, equivalence ratio and air initial temperature. Based on the results, higher volatiles mass fractions and lower char mass fraction have been produced from pyrolyzing of hardwood in comparison with beech wood. Also, Results reveal that with increase of the moisture content from 15% to 35%, syngas LHV and cold gas efficiency reduce by 1.9559 MJ. kg?1 and 25.78% respectively, while H2 mole fraction at the gasifier outlet rises by 0.90%. On the contrary, growth of equivalence ratio from 2 to 10 leads to the drastic increase of syngas LHV by 5.6404 MJ. kg?1, however, cold gas efficiency peaks to 82.75% at the equivalence ratio of 4. Besides, varying the inlet air temperature over a range of 500 K–1300 K causes 0.6938 MJ. kg?1 growth of syngas LHV as well as 9.43% rise of cold gas efficiency.  相似文献   

6.
The current paper concerns the process of non-woody biomass gasification, particularly about releasing processes of detrimental elements. The gasification of corn straw was carried out in a downdraft fixed bed gasifier under atmospheric pressure, using air as an oxidizer. The effects of the operating conditions on gasification performance in terms of the temperature profiles of the gasifier, the composition distribution of the producer gas and the release of sulphur and chlorine compounds during gasification of corn straw were investigated. Besides, the gasification characteristics were evaluated in terms of low heating value (LHV), gas yield, gasification efficiency and tar concentration in the raw gas.  相似文献   

7.
Energy utilization from biomass resources has started to attract public attention as a method to reduce CO2 emissions. In this study, the characteristics of syngas production from biomass gasification were investigated in a downdraft gasifier that was combined with a small gas engine system for power generation. Syngas temperatures from the gasifier were maintained at a level of 700-1000 °C. When the air ratio for gasification was 0.3-0.35, the low heating value of syngas was 1100-1200 kcal Nm−3 and the cold gas efficiency 69-72%. Tar concentration in raw syngas was around 3.9-4.4 g Nm−3. Syngas combustion in the gas engine after purification showed that HC concentration was below 200 ppm, and NOx concentration was below 40 ppm in the exhaust gas.  相似文献   

8.
A model of downdraft gasifier has been described considering thermodynamic equilibrium of species in the pyro-oxidation zone and kinetically controlled reduction reactions in the reduction zone. It is found that the sole use of cow dung as the gasifier fuel is not technically feasible. This is due to very low heating value of the producer gas with much carbon leaving the gasifier as char. However, cow dung can be used as a supplementary fuel blended with a conventional woody biomass, like sawdust. The increased fraction of cow dung in the fuel blend renders the gasification process less efficient, when the gasifier is operated at a particular equivalence ratio. Both the producer gas production rate and its heating value reduce with the increase in the cow dung content in the biomass fuel blend, leading to an overall reduction in the gasifier conversion efficiency. It is observed that an increase in the cow dung content from 0 to 90% in the blended fuel reduces the heating value by 46.8% and the conversion efficiency by 45%. The use of cow dung in between 40 and 50% by mass in the fuel mix would result in an overall fuel economy.  相似文献   

9.
Two zone equilibrium and kinetic free model proposed by the authors in their earlier work [Ratnadhariya JK, Channiwala SA. Two zone equilibrium and kinetic free modeling of gasifier. Proceedings of the 12th European Conference and Technical Exhibition on Biomass for Energy, Industry and Climate Protection. Amsterdam, The Netherlands; 2002. p. 813–816], offers gas composition, temperature profile and gasifier performance parameters for two zones. This model does not predict composition and temperature profile of pyrolysis zone, which is stated to be a precursor for gasification. Looking to this fact a three zone equilibrium and kinetic free model of biomass gasifier is proposed in the present work. In this three zone: first zone of the model is drying and pyrolysis zone combined together; second zone is oxidation zone; and the third zone is the reduction zone. Each zone has been formulated with: (i) reaction stoichiometry; (ii) constituent balance; and (iii) energy balance along with a few justifying assumptions. This model clearly provides an operating range of equivalence ratio and moisture content for the woody biomass materials. Further, this model facilitates the prediction of the maximum temperature in the oxidation zone of gasifier, which provides useful information for the design of the gasifier and selection of the material for the construction. The merits of the model lies in the fact that it is capable of handling predictions for all category of biomass materials with a wide operating range of equivalence ratio and moisture content in all of the three principal zones of the gasifier.  相似文献   

10.
A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells.  相似文献   

11.
Biomass gasification is an important method to obtain renewable hydrogen. However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/N m3 for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H2/kg biomass. For biomass oxygen/steam gasification, the content of H2 and CO reaches 63.27–72.56%, while the content of H2 and CO gets to 52.19–63.31% for biomass air gasification. The ratio of H2/CO for biomass oxygen/steam gasification reaches 0.70–0.90, which is lower than that of biomass air gasification, 1.06–1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.  相似文献   

12.
The dual-stage ignition biomass downdraft gasifier is an enormous tar reduction technology as against a single-stage ignition biomass gasification. Exergetic analysis of the system guides toward a possible performance enhancement. In dual-stage gasification, around 67.76% of input exergy is destructed in the several components, while 9.16% is obtained as a useful exergy output and 24.34% is found to be as a useful energy output there. The entire unit was assessed with a progressively rising electric load from 15.24 kW to 38.86 kW. The enhanced producer gas quality comes from 57% combustible gas with a higher heating value of 6.524 MJ/Nm3 and tar content of 7 mg/Nm3 after the paper filter, whereas the biomass consumption rate is 58 kg/h at the greatest load with the grate temperature of 1310–1370 °C. The samples of exhaust gas emissions are obtained environmentally favorable. The results even described that the dual-stage ignition biomass downdraft gasifier has significantly greater energetic and exergetic efficiency as compared to the single-stage gasifier.  相似文献   

13.
A two dimensional modeling is developed in the reduction zone of a fixed bed downdraft biomass gasifier based on mass, energy and momentum conservation equations written for the solid and fluid phases and coupled with chemical kinetics. Kinetics parameters are derived from previous works and an effectiveness factor was used in the reaction rate correlation to quantify the mass transfer resistance in the bed. The obtained numerical results are compared with experimental and numerical data from literature and a reasonable agreement is observed. Fields of temperature, gaseous concentrations are investigated for the two-dimensional domain. Results show that the solid and fluid inlet temperatures to the reduction zone and the reactivity of the bio-char including the effectiveness factor are the main variables affecting the conversion of char to syngas in the gasification zone of the fixed bed reactor.  相似文献   

14.
《Energy》2002,27(5):415-427
The potential offered by biomass to reduce greenhouse gas production is now being more widely recognised. The energy in biomass may be realised either by direct combustion use, or by upgrading into more valuable and useable products such as gas, fuel oil and higher value products for utilisation in the chemical industry or for clean power generation. Up till now, gasification work has concentrated on woody biomass but recently sources of other biomass with large energy production potential have been identified, namely hazelnut shells. Therefore, a pilot scale downdraft gasifier is used to investigate gasification potential of hazelnut shells. A full mass balance is reported including the tar production rate as well as the composition of the produced gas as a function of feed rate. Additionally, the effect of feed rate on the CV/composition of the product gas and the associated variations of gasifier zone temperatures are determined with temperatures recorded throughout the main zones of the gasifier and also at the gasifier outlet and gas cleaning zones. Pressure drops are also measured across the gasifier and gas cleaning system because the produced gas may be used in conjunction with a power production engine when it is important to have low pressure drop in the system. The quality of the product gas is found to be dependent on the smooth flow of the fuel and the uniformity of the pyrolysis, and so the difficulties, encountered during the experiments are detailed. The optimum operation of the gasifier is found to be between 1.44 and 1.47 N m3/kg of air fuel ratios at the values of 4.06 and 4.48 kg/h of wet feed rate which produces the producer gas with a good GCV of about 5 MJ/m3 at a volumetric flow of 8–9 N m3/h product gas. It was concluded that hazelnut shells could be easily gasified in a downdraft gasifier to produce good quality gas with minimum polluting by-products. It is suggested that, in view of ease of operation, small-scale gasifiers can make an important contribution to the economy of rural areas where the residues of nuts are abundant. It is also suggested that gasification of shell waste products is a clean alternative to fossil fuels and the product gas can be directly used in internal gas combustion engines, thus warranting further investment/encouragement by authorities to exploit this valuable resource.  相似文献   

15.
Energy conversion systems based on biomass are particularly interesting because biomass utilization effectively closes the carbon cycle besides achieving self-sustainability. Biomass is particularly useful for highly populated and agriculture dependent economic nations like China and India. A compact and cost effective downdraft gasification system was developed. The present paper describes an experimental investigation on a biomass based gasifier engine system with a capacity of 35 kVA for power generation application. The problem of cooling and cleaning the hot and dirty gas from the gasifier has been satisfactorily solved by the effective cooling and filtration system. The gasifier developed is observed to be operation friendly. The quality of gas was evaluated in terms of its composition, conversion efficiency and total particulate matter. The maximum output of the power plant was obtained at the combustion zone temperature of 850oC. The experimental investigations showed that the percentage reduction in total particulate matter is 89.32%. The conversion efficiency of the biomass gasifier is found to be dependent on the operation conditions and fuel properties of the gasifier. The optimum value of equivalence ratio was observed to be 0.3134 for achieving the maximum gas conversion efficiency of the present gasifier configuration.  相似文献   

16.
在自行设计的两级下吸式生物质气化炉中,研究了空气当量比(ER)对气体组成、气体热值、气化效率以及焦油含量的影响。试验结果表明,该新型两级气化炉能够产生焦油含量较低的燃气;在空气预热的条件下,焦油含量更低,可达238 mg/m3。该新型两级气化炉的最佳ER为0.33~0.35,当ER=0.34时,气化气低位热值(LHV)最高为4 409 kJ/m3,气化效率为63.7%,焦油含量低于300 mg/m3。  相似文献   

17.
The behaviour of a downdraft rice husk gasifier of diameter 200 mm and a height 940 mm has been studied. The gasification rate was varied in the range 1.8–4.3 × 10?2 kg/m2s. The air velocity was varied in the range 0.032–0.099 m/s. The producer gas obtained from the gasifier has a calorific value in the range 3240–4382 kJ/m3. A set of theoretical kinetic equations on the assumption of nonequilibrium conditions has been developed and solved numerically. The simulated temperature profile and outlet gas composition have been compared with those obtained from experimental runs. The model developed from a mechanistic approach is found to explain the behaviour of the present system appreciably within the range of variables studied.  相似文献   

18.
The paper presents the results of numerical simulation of the gasification process in a downdraft gasifier to produce syngas with high hydrogen content. For the first time, the possibility of using dark fermentation digestate as a feedstock for thermochemical conversion using air as an oxidizer at equivalence ratio (ER) of 0.45, 0.55 and 0.65 was investigated. Modeling of the gasification process was carried out in the software package Comsol Multiphysics. As a result of numerical studies, the concentrations of the main components of the syngas were obtained. The syngas yield at air gasification was 1.8 m3/kg. At the same time, the combustion heat of the generated gas varied from 3.1 to 3.9 MJ/m3 with the molar ratio (MR) being in the range from 3.1 to 3.9. The maximum content of hydrogen (26.94%) in syngas was achieved at an ER of 0.45. The hydrogen production efficiency HPE ranged from 23.8 to 27.3%. The thermal power that can be obtained from the syngas ranges from 47 to 59 kW. Carbon conversion efficiency coefficient (CCE) was 23.6–28.8%. Based on the design calculation, the main geometric parameters of a downdraft gasifier for the production of syngas from anaerobic digestates were obtained.  相似文献   

19.
The management of municipal solid waste (MSW) and the current status of world energy resources crisis are important problems. Gasification is a kind of waste-to- energy conversion scheme that offers the most attractive solution to both waste disposal and energy problems. In this study, the thermodynamic equilibrium model based on equilibrium constant for predicting the composition of producer gas in a downdraft waste gasifier was developed. To enhance the performance of the model, further modification was made by multiplying the equilibrium constants with coefficients. The modified model was validated with the data reported by different researchers. MSW in Thailand was then used to simulate and to study the effects of moisture content (MC) of the waste on the gasifier's performance. The results showed that the mole fraction of H2 gradually increases; CO decreases; CH4, which has a very low percentage in the producer gas increases; N2 slightly decreases; and CO2 increases with increasing MC. The reaction temperature, the calorific value, and the second law efficiency, decrease when MC increases.  相似文献   

20.
Gasification of biomass: comparison of fixed bed and fluidized bed gasifier   总被引:15,自引:0,他引:15  
Gasification as a thermochemical process is defined and limited to combustion and pyrolysis. A systematic overview of reactor designs categorizes fixed bed and fluidized bed reactors. Criteria for a comparison of these reactors are worked out, i.e. technology, use of material, use of energy, environment and economy. A utility analysis for thermochemical processes is suggested. It shows that the advantages of one of the reactor types are marginal. An advantage mainly depends on the physical consistency of the input. As a result there is no significant advantage for the fixed bed or the fluidized bed reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号