首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

2.
The use of a heat exchanger using phase change material (PCM) is an example of latent heat thermal energy storage (LHTES). In this study, the charging of PCM (RT50) is studied in a double pipe heat exchanger. The designing of the heat exchanger needs to be optimized for operating and boundary conditions to store latent heat efficiently. The size of the equipment and the amount of PCM are also important to calculate the latent heat storage capacity of the LHTES device. In this study, the amount of PCM taken is quite high to avoid sensible heat transfer and to maximize the heat content of PCM. The charging process of PCM is numerically simulated using an enthalpy-porosity model. The study includes the effect of inlet temperature and flow rate of high-temperature-fluid (HTF) and concludes that both play an important role in determining the charging time. The continuous increase in inlet temperature of HTF can decrease the charging time of PCM in the heat exchanger. However, the continuous increase in the HTF flow rate cannot show the same effect. The charging time can only be minimized with a specified flow rate regime for a specific inlet temperature of HTF. These factors consequently affect the efficiency of the heat exchanger.  相似文献   

3.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

4.
A preliminary model for estimating possible thermal energy storage in a phase change shell and tube heat exchanger is presented. Effect of various parameters such as thermal and physical properties of PCM and convective fluid, heat exchanger dimensions and heat transfer fluid flow rates both in laminar and turbulent regime on energy storage times are discussed. The model is illustrated for specific cases.  相似文献   

5.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.  相似文献   

6.
The application of a phase change material (PCM) as thermal energy storage observed unprecedented growth due to its large latent heat storage capacity at a constant temperature. However, the design of an energy storage heat exchanger is a challenging task because of the poor thermal conductivity of PCMs. In an effort to improve the heat exchanger design, this paper presents a numerical performance investigation of a PCM-based multitube heat exchanger incorporated with two new fin configurations. The analysis of the results shows that the placement of fins is one of the important aspects, which needs to be cogitated in the design of heat exchangers.  相似文献   

7.
王娟  陈贵军  于浩 《节能》2016,(4):18-21,38,2
选定Ba(OH)_2·8H_2O为适用于回收100℃以下低温余热的移动蓄热系统所研究相变蓄热材料。运用DSC差示扫描仪完成Ba(OH)_2·8H_2O的主要物性参数测定。在此基础上综合考虑相变蓄热材料的蓄热量及火用效率,研究了相变蓄热材料的初温和终温对相变材料热力学性能的影响。  相似文献   

8.
基于三套管式相变蓄热器的特点,提出应用T字形翅片来强化相变蓄热器的传热性能。研究结果表明:添加翅片可有效地降低蓄热器中相变材料的凝固和融化时间,直翅片和T字形翅片的混合强化结构能使凝固过程比未强化结构节省74%的时间,使融化过程节省60%的时间。因此直翅片和T字形翅片的混合使用可以达到进一步强化传热的目的。  相似文献   

9.
Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.  相似文献   

10.
设计了一套定量测试不同工况下壳管式相变蓄热器传热效率装置。采用壳管式相变储热,石蜡填充入壳管间,管内通入冷、热载流体,模拟吸热放热过程。测试发现:相同入口条件下,单位时间传热量随入口水温增加呈线性增加;管内载流体流量加大有助于提高传热水平,15~60 L/h流量内单位时间传热量增速随流量增加放缓;不同材质传热管单位时间传热量变化并不明显,表明管道热阻在相变蓄热器总热阻中所占份额较小;相同工况下的蓄热过程,热载流体由下向上流动传热形式明显优于由上向下管排形式;尝试在封装相变材料中添加金属网状结构,强化相变材料内部热传导速率,对比发现相同工况下相变材料中添加金属网状结构,可提高10%~15%左右传热量。  相似文献   

11.
A novel shape-stabilized n-hexadecane/polyHIPE composite phase change material (PCM) was designed and thermal energy storage properties were determined. Porous carbon-based frameworks were produced by polymerization of styrene-based high internal phase emulsions (HIPEs) in existence of the surface modified montmorillonite nanoclay. The morphological and mechanical properties of the obtained polyHIPEs were investigated by scanning electron microscopy analysis and the compression test, respectively. The polyHIPE composite with the best pore morphology and the highest compression modulus was determined as a framework to prepare the form stable n-hexadecane/polyHIPE composite phase change material using the one-step impregnation method. The chemical structure and morphologic property of composite PCM was investigated by FT-IR and polarized optical microscopy analysis. Thermal stability of the form-stable PCM (FSPCM) was examined by TG analysis. The n-hexadecane fraction engaged into the carbon foam skeleton was found of as 55 wt% from TG curve. differential scanning calorimetry analysis was used for determining melting temperature and latent heat storage capacity of FSPCM and these values were determined as (26.36°C) and (143.41 J/g), respectively. The results indicated that the obtained composite material (FSPCM) has a considerable potential for low temperature (18°C-30°C) thermal energy storage applications with its thermal energy storage capacity, appropriate phase change temperatures and high thermal stability.  相似文献   

12.
通过建立与工业实际相似的加肋同心套管式潜热蓄热器模拟实验台,对潜热蓄热器内通流体时的充热、放热过程进行了实验研究。实验得出了流体的出口温度、充热量和放热量随时间的变化规律。  相似文献   

13.
This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 °C, 86.4 and −88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential.  相似文献   

14.
Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 °C to 90 °C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate increasing from 2.0 × 10−4 kg/s to 8.0 × 10−4 kg/s will lead to the melting time decreasing from 37.42 min to 23.75 min and the TES capacity of PCM increasing from 265.8 kJ/kg to 273.8 kJ/kg. Under all the studied cases, the heat flux on the tube surface increases at first, until it reaches a maximum then it decreases over time. And the larger the initial inlet temperature or mass flow rate, the earlier the maximum value appearance and the larger the maximum value.  相似文献   

15.
Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
During charging and discharging processes, the heat transfer behavior of the encapsulated ice thermal energy storage (TES) system changes during downstream case and this should be taken into account since the temperature of heat transfer fluid (HTF) and especially the heat transfer coefficient varies considerably around each capsule. This requires a careful study of the problem with variable heat transfer coefficient to contribute to the state-of-the-art. This has been the primary motivation behind the present study. Here, we first develop a new heat transfer coefficient correlation by simulating a series of 120 numerical experiments for different capsule diameters, mass flow rates and temperatures of HTF and second undertake a comprehensive numerical analysis using the temperature based fixed grid solution with control volume approach for studying the heat transfer behavior of an encapsulated ice TES system. Thirdly, we validate the present numerical model and the new correlation with some experimental data obtained from the literature, and hence a good agreement is obtained between the model results and experimental data. The results indicate that the heat transfer coefficient varies greatly during downstream and highly affects the heat transfer taking place during the process. So, the solutions with constant heat transfer coefficient appear to be unreliable for analysis and system optimization. The results also show that the solidification process is chiefly governed by the magnitude of Stefan number, capsule diameter and capsule row number.  相似文献   

17.
管壳式相变储能换热器的优化设计   总被引:2,自引:0,他引:2  
叙述了利用优化设计理论对管壳式相变储能换热器进行优化设计的方法。以该装置的成本为优化目标,储热量,放热时间,传热量,加工和防腐要求作为约束条件,得出了最佳的管子半径,厚度及管子根数,并给出了一个计算实例。  相似文献   

18.
Microcapsules containing caprylic acid and polyethylacrylate shells were prepared using an emulsion polymerization technique for thermal energy storage applications. Ethylene glycol dimethacrylate was used as a crosslinking agent. The influence of the crosslinking agent concentration on the phase change properties of microcapsules was examined. The caprylic acid microcapsules (MicroPCMs) were analyzed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and differential scanning calorimetry. The results showed that microcapsules were synthesized successfully and that the best shell material:crosslinking agent concentration ratio was 1:0.2. The melting and freezing temperatures were measured through differential scanning calorimetry analysis and found to be 13.3 and 7.1°C, respectively. The melting and crystallization heats were determined to be 77.3 and ?77.0 kJ/kg, and the mean particle diameter was 0.64 μm. The thermal cycling tests of the microcapsules were performed for 400 heating/cooling cycles, and the results indicate that the synthesized microcapsules have good thermal reliabilities. Air stability test proved that the thermal properties and physical form of microcapsules were not affected by air. We recommend the prepared thermal, air, and chemically stable caprylic acid microcapsules for thermal energy storage applications as novel microPCM with latent heat storage capacities and properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 °C and crystallizes at 40.6 °C. It has latent heats of 54.6 and −48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号