首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field emission behavior of aligned carbon nanotubes (CNTs) is remarkably improved by decorating their surfaces with Ti nanoparticles through a sputtering process. The CNT/Ti(4 nm) sample shows a low turn-on field of 0.63 V/μm at 10 μA/cm2, low threshold field of 1.06 V/μm at 1 mA/cm2, and maximum field emission current density of 23 mA/cm2 at 1.80 V/μm. The enhanced field emission properties of the CNT/Ti samples are attributed to the added defect sites and Ti nanoparticles, which increase the field enhancement factor and density of emission sites. Stability measurements indicate that the Ti coating, which acts as a protective layer, also strengthens the field emission stability of the CNT arrays. Moreover, the extent of hysteresis in the current–voltage sweep highly depends on the voltage-sweep speed.  相似文献   

2.
A planar-gate electron source with multi-wall carbon nanotubes (MWNTs) has been successfully fabricated by conventional magnetron sputtering, lithography and electrophoretic deposition (EPD). The optical microscopy showed that he MWNTs purified in H2SO4/HNO3 solution were selectively deposited on cathode. High resolution transmission electron microscopy (HRTEM) images and Raman spectra demonstrated that some MWNTs was destroyed and generated some defect. Field emission results indicated that the emission current of this triode structure is completely controlled by gate voltage. The turn-on voltage of electrophoretic deposited MWNTs cathode at current density of 1 μA/cm2 was lower than that of screen printed MWNTs cathode besides better emission uniformity. In addition, the emission current fluctuation was less than 3% for 400 min. All the results indicate that the fabricated electron emission source has a good field emission performance and long lifetime.  相似文献   

3.
This work presents post-fabrication electric field and heat treatment methods developed for polymer light emitting diodes (PLEDs), which have degraded due to exposure to oxygen and water vapors during low-cost fabrication performed in standard room conditions. Investigated PLEDs have structures composed of indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate), (PEDOT:PSS), poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), and aluminum (Al). Heat treatment restores the light emitting function of dysfunctional PLEDs but also causes a high turn-on voltage of 10 V. Electric field treatment utilizing ?1 V reduces this high turn-on voltage to 3 V. This procedure also improves open circuit voltages from 5 mV to 55 mV, and short circuit currents from 0.5 nA to 5 nA when PLEDs are operated as photovoltaic cells under a light intensity of 500 mW/m2. Repeated IV sweep measurements additionally show improved stability and uniformity. The reasons for these improvements, the usage of an optimal treatment temperature of 130 °C, and the usage of treatment voltages of 0 and ?1 V are discussed.  相似文献   

4.
A boron-doped diamond field emitter diode with ultralow turn-on voltage and high emission current is reported. The diamond field emitter diode structure with a built-in cap was fabricated using molds and electrostatic bonding techniques. The emission current versus anode voltage of the capped diamond emitter diode with boron doping, sp2 content, and vacuum thermal electric (VTE) treatment shows a very low turn-on voltage of 2 V. A high emission current of 1 μA at an anode voltage of less than 10 V can be obtained from a single diamond tip. The turn-on voltage is significantly lower than comparable silicon field emitters  相似文献   

5.
Green electrophosphorescent inverted top-emitting organic light-emitting diodes with a Ag/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) anode are demonstrated. A high current efficacy of 124.7 cd/A is achieved at a luminance of 100 cd/m2 when an optical outcoupling layer of N,N′-di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (α-NPD) is deposited on the anode. The devices have a low turn-on voltage of 3.0 V and exhibit low current efficacy roll-off through luminance values up to 10,000 cd/m2. The angle dependent spectra show deviation from Lambertian emission and color change with viewing angle. Hole-dominated devices with Ag/HAT-CN electrodes show current densities up to three orders of magnitude higher than devices without HAT-CN.  相似文献   

6.
The paper presented here offers a two stage amplifier where both stages are in class AB mode. The input stage makes use of a floating gate metal oxide semiconductor (FGMOS) transistor which enables this circuit to operate at lower voltage and also increases overall linearity. The frequency compensation is done using voltage buffer scheme. A super source follower (SSF) acts as voltage buffer and exploited here with a series capacitor. The function of SSF is to enhance phase margin (PM) and gain bandwidth product (GBW) of the amplifier. The small signal equivalent and mathematical analysis of circuit is also given. The performance of the proposed circuit has been verified by using Mentor Graphics Eldo simulation tool with TSMC CMOS 0.18 μm process parameters. The ac simulation results of amplifier show that GBW is 9 MHz and power consumption is 0.5 mW.  相似文献   

7.
《Organic Electronics》2008,9(5):834-838
Novel light-emitting transistors (OLETs) with the split-gate electrode divided into two parts for independent control of electron and hole were devised, in addition to the PN-hetero-boundary combined with the electron and hole transport materials along carrier channels. With this device structure, the on/off ratio of 1000 or more in the current and the luminance were achieved. Which is 100 times or more large compared with earlier reported single-gate type PN-hetero-boundary light-emitting transistor [N. Suganuma, N. Shimoji, Y. Oku, K. Matsushige, Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin films, J. Mater. Res. 22 (2007) 2982; N. Suganuma, N. Shimoji, PCT Int. Appl. WO2007/010925; N. Suganuma, PCT Int. Appl. WO2007/026703]. In this device, the luminance of about 100 cd/m2 was obtained at 15 V in the source–source voltage (also known as the source–drain voltage) with the turn-on voltage of less than 10 V. The horizontal PN-hetero-boundary structure was implemented for the first time by using the photolithographic patterning of the organic semiconductor thin-films. This patterning technique can be applied in fabricating not only organic light-emitting transistors reported in this article but also organic integrated circuit or organic display.  相似文献   

8.
《Organic Electronics》2014,15(8):1767-1772
The charge storage behavior of a floating gate memory device using carbon nanotube-CdS nanostructures embedded in Bombyx mori silk protein matrix has been demonstrated. The capacitance – voltage characteristics in ITO/CNT–CdS-silk composite/Al device exhibits a clockwise hysteresis behavior due to the injection and storage of holes in the quantized valence band energy levels of CdS nanocrystals. The enhanced charge injection resulting in increase in memory window is observed at higher sweeping voltages. Nearly frequency independent hysteresis width over a wide range of 100 kHz–2.0 MHz, indicates its origin due to the charge storage in nanocrystals. The memory behavior of carbon nanotube–CdS nanostructures/silk nanocomposite devices has also been demonstrated on polyethylene terephthalate substrates, which may provide the way for flexible, transparent and printable electronic devices.  相似文献   

9.
This paper provides an insight into the operational robustness of commercially available SiC MOSFET power modules, during short-circuit (SC) and unclamped inductive switching (UIS) test environments. A set of five different power modules from three vendors rated from 1.2–1.7 kV and with various current ratings have been evaluated, where the possible failure mechanisms that cause the breakdown of the modules have been addressed. The SC pulse duration of the modules was gradually increased until the failure occurred. A critical short circuit energy in the order of 4.0–8.0 J was observed at a supply voltage of 800 V and a pulse duration of 4.0 μs. At lower supply voltage of 500 V, all modules survived until 10.0 μs. One of the modules, rated at 1.7 kV, survived SC tests at voltages up to 1000 V for a pulse duration of 4 μs, but failed when the supply voltage was increased to 1100 V. Prior to failure, a gate-source voltage drop has been recorded, which is associated with a high G-S leakage current. The main failure mechanism, however, is the thermal runaway which leads the devices into avalanche breakdown mode. During the UIS tests, multiple samples from the three vendors of the power modules failed. The failure of the modules was always caused by the external diode connected in parallel with the MOSFETs. One of the modules from the same vendor which does not have external diode and another module from a different vendor with external diode survived the UIS tests under nominal test conditions.  相似文献   

10.
Organic rectifier diodes operating at 10 MHz made using roll-to-roll compatible mass printing processes to define patterns and deposit inks are reported. The diodes consist of a layer of poly(triarylamine) sandwiched between layers of silver and copper. No high resolution prepatterning of any surfaces was performed, thus the entire process could be carried out on large-scale roll-to-roll production lines. The organic diode based rectifier circuit generates a DC output voltage of approximately 2.7 V at 10 MHz, using an input signal with zero-to-peak voltage amplitude of 10 V. The result demonstrates the possibility of printed organic diodes for RFID applications.  相似文献   

11.
Light-emitting field-effect transistors with a liquid crystalline polymer of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) were investigated under alternating current (AC) gate operations. Bottom-contact/top-gate devices were fabricated with indium-tin-oxide (ITO) source/drain electrodes, a poly(methyl methacrylate) dielectric and a gold gate electrode. The crystalline F8T2 film exhibited ambipolar characteristics with electron and hole mobilities of 1.8 × 10?3 and 2.5 × 10?3 cm2/V s, respectively, although the threshold voltage was considerably higher for electron injection. By applying square-wave voltages to the gate, light emission was obtained at the both edges of the source and drain electrodes by alternating injection of opposite carriers even when the source and drain were grounded. The light intensity was enhanced in the channel region by biasing the source negative while biasing the drain positive where the holes injected from the drain were transported to recombine with the electrons injected at the source edge.  相似文献   

12.
《Microelectronics Journal》2007,38(6-7):750-753
A novel InGaP/GaAs heterostructure-emitter bipolar transistor (HEBT) with InGaAs/GaAs superlattice-base structure is proposed and demonstrated by two-dimensional analysis. As compared with the traditional HEBT, the studied superlattice-base device exhibits a higher collector current, a higher current gain of 246, and a lower base–emitter (B–E) turn-on voltage of 0.966 V at a current level of 1 μA, attributed to the increased charge storage of minority carriers in the InGaAs/GaAs superlattice-base region by tunneling behavior. The low turn-on voltage can reduce the operating voltage and collector–emitter offset voltage for low power consumption in circuit applications.  相似文献   

13.
We have investigated the characteristics of Cs2CO3 doped 4, 7-Diphenyl-1, 10-phenanthroline (Bphen) film and the effects of its thickness on the optoelectrical performance of microcavity organic light-emitting diodes. By doping Cs2CO3 into Bphen, higher current density and lower turn-on voltage could be achieved with barely changing the external quantum efficiency. Three types of resonators were fabricated by varying the thickness of every a quarter of electron transport layers, i.e. 152.5 nm (0.25 λ), 305 nm (0.5 λ), and 610 nm (1.0 λ). The 0.25λ-based microcavity organic light-emitting diode was found to exhibit the lowest waveguided loss coefficient of 118.0 cm−1, while the relative emission intensity of edge mode to surface reached about 2118.8 times, indicating that this mode underwent a very low attenuation during its propagation.  相似文献   

14.
《Microelectronics Journal》2015,46(10):970-980
Traditional digital controls mostly use digital–analog converters to convert input and output voltages into digital coding to achieve control. This paper proposes the use of two digital ramps with two different frequencies to replace a digital–analog converter. This approach can produce seven bit resolution for the DPMW signal. In addition, we use an all-digital DLL phase correction concept to further enhance the resolution of the DPWM signal by an additional three bits, resulting in 10-bit DPWM signal resolution. The proposed circuit uses 0.35 μm CMOS processes, with a core area of 0.987 mm2, a system switching frequency of 500 KHz, an input voltage range of 3.3–4.2 V, and an output voltage range of 5 V. Output voltage measurement accuracy reaches 99%, while the system reaches efficiency of 91% with output loads of up to 500 mA.  相似文献   

15.
Bright and efficient violet quantum dot (QD) based light-emitting diodes (QD-LEDs) with heavy-metal-free ZnSe/ZnS have been demonstrated by choosing different hole transport layers, including poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB), and poly-N-vinylcarbazole (PVK). Violet QD-LEDs with maximum luminance of about 930 cd/m2, the maximum current efficiency of 0.18 cd/A, and the peak EQE of 1.02% when poly-TPD was used as HTL. Higher brightness and low turn-on voltage (3.8 V) violet QD-LEDs could be fabricated when TFB was used as hole transport material. Although the maximum luminance could reach up to 2691 cd/m2, the devices exhibited only low current efficiency (∼0.51 cd/A) and EQE (∼2.88%). If PVK is used as hole transport material, highly efficient violet QD-LEDs can be fabricated with lower maximum luminance and higher turn-on voltages compared with counterpart using TFB. Therefore, TFB and PVK mixture in a certain proportion has been used as HTL, turn-on voltage, brightness, and efficiency all have been improved greatly. The QD-LEDs is fabricated with 7.39% of EQE and 2856 cd/m2 of maximum brightness with narrow FWHM less than 21 nm. These results represent significant improvements in the performance of heavy-metal-free violet QD-LEDs in terms of efficiency, brightness, and color purity.  相似文献   

16.
Single emission layer white organic light-emitting diodes (WOLEDs) showing high color stability, low turn-on voltage, high efficiency and low efficiency roll-off by incorporating iridium(III) bis[(4,6-difluo-rophenyl)-pyridinato-N,C2] (FIrpic) and bis(2-phenylbenzothiazolato) (acetylacetonate)iridium(III) (Ir(BT)2(acac)) phosphors dyes have been demonstrated. Our WOLEDs without any out-coupling schemes as well as n-doping strategies show low operating voltages, low turn-on voltage (defined for voltage to obtain a luminance of 1 cd/m2) of 2.35 V, 79.2 cd/m2 at 2.6 V, 940.5 cd/m2 at 3.0 V and 10 300 cd/m2 at 4.0 V, respectively, and achieve a current efficiency of 40.5 cd/A, a power efficiency of 42.6 lm/W at a practical brightness of 1000 cd/m2, and a low efficiency roll-off 14.7% calculated from the maximum efficiency value to that of 5000 cd/m2. Such improved properties are attributed to phosphors assisted carriers transport for achieving charge carrier balance in the single light-emitting layer (EML). Meanwhile the host–guest energy transfer and direct exciton formation process are two parallel pathways serve to channel the overall excitons to dopants, greatly reduced the unfavorable energy losses.  相似文献   

17.
A novel vacuum field emission differential amplifier integrated circuit (VFE diff-amp IC) utilising carbon nanotube (CNT) emitters is presented. A dual-mask microfabrication process is employed to achieve the VFE diff-amp IC by integrating identical CNT VFE transistors with built-in split gates and anodes. The pair of integrated amplifiers shows low gate turn-on voltage, large DC gain, a reasonable transconductance, and a good common-mode rejection ratio. The approach demonstrates a new way for development of temperature- and radiation-tolerant VFE integrated microelectronics.  相似文献   

18.
ZnSe nanostructures, such as nanobelts, nanorods and nanocones, were successfully synthesized on Zn foils via a hydrothermal method using EDTA as soft template at low temperature. EDTA played a significant role on the morphology of ZnSe nanomaterials. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were carried out to characterize the microstructures and chemical compositions of the as-synthesized ZnSe samples. XRD patterns indicated that the as-synthesized ZnSe samples belonged to a cubic zinc blende structure. SEM observation obviously showed that the nanocones had very sharp tips compared to nanorods and nanobelts. The field emission (FE) measurement showed that the as-synthesized ZnSe nanocones had a lower turn-on field of ~1.6 V μm−1 at the current density of 10 μA cm−2. A high field enhancement factor of ~4514 was achieved for the ZnSe nanocones. The superior field emission properties were probably attributed to the sharp tips of the ZnSe nanocones. Room temperature photoluminescence (PL) spectroscopy of the ZnSe nanostructures showed a wide band emission from blue light to orange light. The as-prepared ZnSe nanomaterials have promising applications in optoelectronic devices. A possible formation mechanism of ZnSe nanobelts, nanorods and nanocones was also proposed and discussed.  相似文献   

19.
《Microelectronics Journal》2015,46(5):362-369
A new solution for an ultra-low-voltage, low-power, bulk-driven fully differential-difference amplifier (FDDA) is presented in the paper. Simulated performance of the overall FDDA for a 50 nm CMOS process and supply voltage of 0.4 V, shows dissipation power of 31.8 μW, the open loop voltage gain of 58.6 dB and the gain-bandwidth product (GBW) of 2.3 MHz for a 20 pF load capacitance. Despite the very low supply voltage, the FDDA exhibits rail-to-rail input/output swing. The circuit performance has also been tested in two applications; the differential voltage follower and the second-order band-pass filter, showing satisfactory accuracy and dynamic range.  相似文献   

20.
A series of locally twisted dual-functional materials namely PIPT, PITT and PIFT have been designed and synthesized by introducing different polyaromatic hydrocarbon groups to a phenanthroimidazole backbone through a thiophene bridge. In these molecules, the thiophene bridge and phenanthroimidazole platform are nearly coplanar and this endows these materials with relatively shallow HOMO levels (−5.35 to −5.21 eV). On the other hand, the bulky polyaromatic hydrocarbon units introduce non-planar twisty structures which reduce molecular aggregations. These three materials show color-tunable emission (emission peak from 468 to 532 nm in film) and high thermal stability (Tg > 160 °C). Simple trilayer devices using these three phenanthroimidazole derivatives as non-doped emitting layers exhibit low turn-on voltages (2.3–2.7 V) and high maximum efficiencies of 3.74, 6.15 and 6.89 cd/A for PIPT, PITT and PIFT, respectively. Above all, owing to their shallow HOMO levels for enabling efficient hole-injection, even simpler bilayer devices employing these materials as hole-transporting emitters show low turn-on voltages (2.6–2.8 V) and high efficiencies of 5.77 cd/A for PIPT, 6.03 cd/A for PITT and 6.04 cd/A for PIFT, respectively. These comparable performances with those of the trilayer configurations show the efficient hole-injection/transport ability of these three newly developed emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号