首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective ventilation in general hospital wards is important for controlling the airborne transmission of infectious respiratory diseases. Experiments have been carried out to increase our understanding of the interaction of the breathing flows of two individuals in a full-scale experimental hospital ward with three ventilation systems, i.e. mixing, downward and displacement ventilation. Two life-size breathing thermal manikins were used to simulate a source patient and a receiving patient. The exhalation jet from a bed-lying manikin was visualized using smoke. N2O was used as tracer gas to simulate the droplet nuclei exhaled by patients; and the spatial distribution of its concentrations was measured. Our experimental results show that for both mixing and downward ventilation, the exhaled jet penetrates a short distance and is diluted quickly by ventilation air. The exhaled droplet nuclei are well mixed in the ward. Bed distance does not affect the personal exposure of the receiving patient. For displacement ventilation, the exhaled jet can penetrate a long distance. A high concentration layer of exhaled droplet nuclei because of thermal stratification locking has also been observed with displacement ventilation. This work is useful for identifying an appropriate ventilation method that can remove droplet nuclei more effectively and minimize the risk of cross-infections in a hospital ward environment. PRACTICAL IMPLICATIONS: As one of the major potential sources for infectious droplet nuclei in a hospital environment, exhalation flows of an infected patient can interact with the respiratory activities of other close individuals and with the room ventilation systems. Our latest results provide information on the penetration of exhalation jets into the ambient environment in different ventilation systems. This work is useful in identifying an appropriate and effective ventilation method for removing droplet nuclei more effectively, and thus minimizing the risk of cross-infections in hospital wards with multiple beds.  相似文献   

2.
The risk of cross‐infection is high when the susceptible persons are exposed to the pathogen‐laden droplets or droplet nuclei exhaled by infectors. This study proposes a jet integral model to predict the dispersion of exhaled contaminants, evaluating the exposure risk and determining a threshold distance to identify the direct and indirect exposures in both thermally uniform and stratified environments. The results show that the maximum concentration of contaminants exhaled by a bed‐lying infector clearly decreases in a short distance (<1.8 m) in a uniform environment, while it maintains high values in a long distance in a stratified environment. The lock‐up phenomenon largely weakens the decay of the concentration. The direct exposure of the receiver is determined primarily by the impact scope of the exhaled airflow, while the indirect exposure is mainly related to the ventilation rate and air distribution in the room. In particular, the distance of direct exposure is the longest (approximately 2 m) when the receiver's breathing height is at the lock‐up layer in a stratified environment. Our study could be useful for developing effective prevention measures to control cross‐infection in the initial stage of design of indoor layouts and ventilation systems.  相似文献   

3.
The occurrence of close proximity infection for many respiratory diseases is often cited as evidence of large droplet and/or close contact transmission. We explored interpersonal exposure of exhaled droplets and droplet nuclei of two standing thermal manikins as affected by distance, humidity, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short‐range modes and the long‐range airborne route. The short‐range modes include both the conventional large droplet route and the newly defined short‐range airborne transmission. We thus reveal that transmission occurring in close proximity to the source patient includes both droplet‐borne (large droplet) and short‐range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet‐borne and short‐range airborne routes are different; their effective control methods also differ. Neither the current droplet precautions nor dilution ventilation prevents short‐range airborne transmission, so new control methods are needed.  相似文献   

4.
Some infectious diseases, such as influenza, tuberculosis, and SARS-CoV-2, may be transmitted when virus-laden particles expelled from an infectious person are inhaled by someone else, which is known as the airborne transmission route. These virus-laden particles are more concentrated in the expiratory jet of an infectious person than elsewhere in a well-mixed room, but this near-field enhancement in virion exposure has not been well quantified. Transmission of airborne viruses depends on factors that are inherently variable and, in many cases, poorly constrained, and quantifying this uncertainty requires large ensembles of model simulations that span the variability in input parameters. However, models that are well-suited to simulate the near-field evolution of respiratory particles are also computationally expensive, which limits the exploration of parametric uncertainty. In order to perform many simulations that span the wide variability in factors governing airborne transmission, we developed the Quadrature-based model of Respiratory Aerosol and Droplets (QuaRAD). QuaRAD is an efficient framework for simulating the evolution of virus-laden particles after they are expelled from an infectious person, their deposition to the nasal cavity of a susceptible person, and the subsequent risk of initial infection. We simulated 10 000 scenarios to quantify the risk of initial infection by a particular virus, SARS-CoV-2. The predicted risk of infection was highly variable among scenarios and, in each scenario, was strongly enhanced near the infectious individual. In more than 50% of scenarios, the physical distancing needed to avoid near-field enhancements in airborne transmission was beyond the recommended safe distance of two meters (six feet) if the infectious person is not wearing a mask, though this distance defining the near-field extent was also highly variable among scenarios; the variability in the near-field extent is explained predominantly by variability in expiration velocity. Our findings suggest that maintaining at least two meters of distance from an infectious person greatly reduces exposure to airborne virions; protections against airborne transmission, such as N95 respirators, should be available when distancing is not possible.  相似文献   

5.
There have been few recent studies demonstrating a definitive association between the transmission of airborne infections and the ventilation of buildings. The severe acute respiratory syndrome (SARS) epidemic in 2003 and current concerns about the risk of an avian influenza (H5N1) pandemic, have made a review of this area timely. We searched the major literature databases between 1960 and 2005, and then screened titles and abstracts, and finally selected 40 original studies based on a set of criteria. We established a review panel comprising medical and engineering experts in the fields of microbiology, medicine, epidemiology, indoor air quality, building ventilation, etc. Most panel members had experience with research into the 2003 SARS epidemic. The panel systematically assessed 40 original studies through both individual assessment and a 2-day face-to-face consensus meeting. Ten of 40 studies reviewed were considered to be conclusive with regard to the association between building ventilation and the transmission of airborne infection. There is strong and sufficient evidence to demonstrate the association between ventilation, air movements in buildings and the transmission/spread of infectious diseases such as measles, tuberculosis, chickenpox, influenza, smallpox and SARS. There is insufficient data to specify and quantify the minimum ventilation requirements in hospitals, schools, offices, homes and isolation rooms in relation to spread of infectious diseases via the airborne route. PRACTICAL IMPLICATION: The strong and sufficient evidence of the association between ventilation, the control of airflow direction in buildings, and the transmission and spread of infectious diseases supports the use of negatively pressurized isolation rooms for patients with these diseases in hospitals, in addition to the use of other engineering control methods. However, the lack of sufficient data on the specification and quantification of the minimum ventilation requirements in hospitals, schools and offices in relation to the spread of airborne infectious diseases, suggest the existence of a knowledge gap. Our study reveals a strong need for a multidisciplinary study in investigating disease outbreaks, and the impact of indoor air environments on the spread of airborne infectious diseases.  相似文献   

6.
Xie X  Li Y  Chwang AT  Ho PL  Seto WH 《Indoor air》2007,17(3):211-225
A large number of infectious diseases are believed to be transmitted between people via large droplets and by airborne routes. An understanding of evaporation and dispersion of droplets and droplet nuclei is not only significant for developing effective engineering control methods for infectious diseases but also for exploring the basic transmission mechanisms of the infectious diseases. How far droplets can move is related to how far droplet-borne diseases can transmit. A simple physical model is developed and used here to investigate the evaporation and movement of droplets expelled during respiratory activities; in particular, the well-known Wells evaporation-falling curve of droplets is revisited considering the effect of relative humidity, air speed, and respiratory jets. Our simple model considers the movement of exhaled air, as well as the evaporation and movement of a single droplet. Exhaled air is treated as a steady-state non-isothermal (warm) jet horizontally issuing into stagnant surrounding air. A droplet is assumed to evaporate and move in this non-isothermal jet. Calculations are performed for both pure water droplets and droplets of sodium chloride (physiological saline) solution (0.9% w/v). We calculate the droplet lifetimes and how droplet size changes, as well as how far the droplets travel in different relative humidities. Our results indicate that a droplet's size predominately dictates its evaporation and movement after being expelled. The sizes of the largest droplets that would totally evaporate before falling 2 m away are determined under different conditions. The maximum horizontal distances that droplets can reach during different respiratory activities are also obtained. Our study is useful for developing effective prevention measures for controlling infectious diseases in hospitals and in the community at large. PRACTICAL IMPLICATIONS: Our study reveals that for respiratory exhalation flows, the sizes of the largest droplets that would totally evaporate before falling 2 m away are between 60 and 100 microm, and these expelled large droplets are carried more than 6 m away by exhaled air at a velocity of 50 m/s (sneezing), more than 2 m away at a velocity of 10 m/s (coughing) and less than 1 m away at a velocity of 1 m/s (breathing). These findings are useful for developing effective engineering control methods for infectious diseases, and also for exploring the basic transmission mechanisms of the infectious diseases. There is a need to examine the air distribution systems in hospital wards for controlling both airborne and droplet-borne transmitted diseases.  相似文献   

7.
孙苗  李著萱 《暖通空调》2022,(1):143-147
介绍了控制传染源、切断传染链及隔离易感人群的呼吸道传染病非医学防控原则,以及呼吸道传染病医疗设施的必要安全措施.详细介绍了呼吸道传染病环境控制要点,包括分区及物理防控措施、空气环境内病毒传播途径控制、新风换气次数控制、污染区保持负压、空气环境控制区域的消毒措施及空气处理、防止污染空气排放与进风发生短路的有效措施,以及空...  相似文献   

8.
The cost of nosocomial infections in the United States is estimated to be 4 billion to4 billion to 5 billion annually. Applying a scientifically based analysis to disease transmission and performing a site specific risk analysis to determine the design of the ventilation system can provide real and long term cost savings. Using a scientific approach and convincing data, this paper hypothetically illustrates how a ventilation system design can be optimized to potentially reduce infection risk to occupants in an isolation room based on a thorough risk assessment without necessarily increasing ventilation airflow rate. A computational fluid dynamics (CFD) analysis was performed to examine the transport mechanism, particle path and a suggested control strategy for reducing airborne infectious disease agents. Most studies on the transmission of infectious disease particles have concentrated primarily on air changes per hour (ACH) and how ACH provides a dilution factor for possible infectious agents. Although increasing ventilation airflow rate does dilute concentrations better when the contaminant source is constant, it does not increase ventilation effectiveness. Furthermore, an extensive literature review indicates that not every exposure to an infectious agent will necessarily cause a recipient infection. The results of this study suggest a hypothesis that in an enclosed and mechanically ventilated room (e.g., an isolation room), the dominant factor that affects the transmission and control of contaminants is the path between the contaminant source and exhaust. Contaminants are better controlled when this path is uninterrupted by an air stream. This study illustrates that the ventilation system design, i.e., when it conforms with the hypothesized path principle, may be a more important factor than flow rate (i.e., ACH). A secondary factor includes the distance from the contaminant source. This study provides evidence and supports previous studies that moving away from the patient generally reduces the infection risk in a transient (coughing) situation, although the effect is more pronounced under higher flow rate. It is noted that future research is needed to determine the exact mode of transmission for most recently identified organisms.  相似文献   

9.
X. Li  J. Niu  N. Gao 《Indoor air》2013,23(2):162-171
Personalized ventilation (PV) system in conjunction with total ventilation system can provide cleaner inhaled air for the user. Concerns still exist about whether the normally protecting PV device, on the other hand, facilitates the dispersion of infectious agents generated by its user. In this article, two types of PV systems with upward supplied fresh air, namely a chair‐based PV and one kind of desk‐mounted PV systems, when combined with mixing ventilation (MV) and displacement ventilation (DV) systems, are investigated using simulation method with regard to their impacts on co‐occupant's exposure to the exhaled droplet nuclei generated by the infected PV user. Simulation results of tracer gas and particles with aerodynamic diameter of 1, 5, and 10 μm from exhaled air show that, when only the infected person uses a PV, the different PV air supplying directions present very different impacts on the co‐occupant's intake under DV, while no apparent differences can be observed under MV. The findings demonstrate that better inhaled air quality can always be achieved under DV when the adopted PV system can deliver conditioned fresh air in the same direction with the mainly upward airflow patterns of DV.  相似文献   

10.
The level of exposure to human exhaled contaminants in a room depends not only on the air distribution system but also on people's different positions, the distance between them, people's activity level and height, direction of exhalation, and the surrounding temperature and temperature gradient. Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance between the manikins are changed to study the influence on the level of exposure. The results show that the air exhaled by a manikin flows a longer distance with a higher concentration in case of displacement ventilation than in the other two cases, indicating a significant exposure to the contaminants for one person positioned in front of another. However, in all three cases, the exhalation flow of the source penetrates the thermal plume, causing an increase in the concentration of contaminants in front of the target person. The results are significantly dependent on the distance and position between the two manikins in all three cases. PRACTICAL IMPLICATIONS: Indoor environments are susceptible to contaminant exposure, as contaminants can easily spread in the air. Human breathing is one of the most important biological contaminant sources, as the exhaled air can contain different pathogens such as viruses and bacteria. This paper addresses the human exhalation flow and its behavior in connection with different ventilation strategies, as well as the interaction between two people in a room. This is a key factor for studying the airborne infection risk when the room is occupied by several persons. The paper only takes into account the airborne part of the infection risk.  相似文献   

11.
This paper investigates the airflow and pollutant distribution patterns in a “negative pressure” isolation room by means of objective measurement and computational fluid dynamics (CFD) modeling based on three ventilation strategies. An effective ventilation system is crucial to protect doctors, nurses and other health-care workers from patients with infectious disease. In the preliminary study with Strategy 1, the isolation room has two air supply diffusers and two extract grilles mounted on the ceiling. Strategy 2 retains the air supply diffusers in Strategy 1 but relocates the two extract grilles to the wall behind the bed at 0.3 m above the floor level. Strategy 3 has the same layout as Strategy 2 except the ceiling diffusers are replaced by supply grilles and relocated closer to the wall behind the bed.  相似文献   

12.
Transport of expiratory droplets in an aircraft cabin   总被引:1,自引:0,他引:1  
Gupta JK  Lin CH  Chen Q 《Indoor air》2011,21(1):3-11
The droplets exhaled by an index patient with infectious disease such as influenza or tuberculosis may be the carriers of contagious agents. Indoor environments such as the airliner cabins may be susceptible to infection from such airborne contagious agents. The present investigation computed the transport of the droplets exhaled by the index patient seated in the middle of a seven-row, twin-aisle, fully occupied cabin using the CFD simulations. The droplets exhaled were from a single cough, a single breath, and a 15-s talk of the index patient. The expiratory droplets were tracked by using Lagrangian method, and their evaporation was modeled. It was found that the bulk airflow pattern in the cabin played the most important role on the droplet transport. The droplets were contained in the row before, at, and after the index patient within 30 s and dispersed uniformly to all the seven rows in 4 minutes. The total airborne droplet fraction reduced to 48, 32, 20, and 12% after they entered the cabin for 1, 2, 3, and 4 min, respectively, because of the ventilation from the environmental control system. PRACTICAL IMPLICATIONS: It is critical to predict the risk of airborne infection to take appropriate measures to control and mitigate the risk. Most of the studies in past either assume a homogenous distribution of contaminants or use steady-state conditions. The present study instead provides information on the transient movement of the droplets exhaled by an index passenger in an aircraft cabin. These droplets may contain active contagious agents and can be potent enough to cause infection. The findings can be used by medical professionals to estimate the spatial and temporal distribution of risk of infection to various passengers in the cabin.  相似文献   

13.
Li Y  Huang X  Yu IT  Wong TW  Qian H 《Indoor air》2005,15(2):83-95
Severe acute respiratory syndrome (SARS) is primarily transmitted by bio-aerosol droplets or direct personal contacts. This paper presents a detailed study of environmental evidence of possible airborne transmission in a hospital ward during the largest nosocomial SARS outbreak in Hong Kong in March 2003. Retrospective on-site inspections and measurements of the ventilation design and air distribution system were carried out on July 17, 2003. Limited on-site measurements of bio-aerosol dispersion were also carried out on July 22. Computational fluid dynamics simulations were performed to analyze the bio-aerosol dispersion in the hospital ward. We attempted to predict the air distribution during the time of measurement in July 2003 and the time of exposure in March 2003. The predicted bio-aerosol concentration distribution in the ward seemed to agree fairly well with the spatial infection pattern of SARS cases. Possible improvement to air distribution in the hospital ward was also considered. PRACTICAL IMPLICATIONS: Our study revealed the need for the development of improved ventilation and air-conditioning systems in an isolation ward or a general hospital ward for infectious respiratory diseases. The outbreak in Ward 8A, which was in a general hospital and could house nearly 40 patients, demonstrated the cross-infection risks of respiratory infectious diseases in hospitals if a potential highly infectious patient was not identified and isolated. Our example simulation, which extended the SARS Busters' design for an isolation room to Ward 8A, demonstrated that there was room for improvement to minimize cross-infection in large general hospital wards.  相似文献   

14.
Inhalation of expiratory droplets in aircraft cabins   总被引:1,自引:0,他引:1  
Gupta JK  Lin CH  Chen Q 《Indoor air》2011,21(4):341-350
Airliner cabins have high occupant density and long exposure time, so the risk of airborne infection transmission could be high if one or more passengers are infected with an airborne infectious disease. The droplets exhaled by an infected passenger may contain infectious agents. This study developed a method to predict the amount of expiratory droplets inhaled by the passengers in an airliner cabin for any flight duration. The spatial and temporal distribution of expiratory droplets for the first 3 min after the exhalation from the index passenger was obtained using the computational fluid dynamics simulations. The perfectly mixed model was used for beyond 3 min after the exhalation. For multiple exhalations, the droplet concentration in a zone can be obtained by adding the droplet concentrations for all the exhalations until the current time with a time shift via the superposition method. These methods were used to determine the amount of droplets inhaled by the susceptible passengers over a 4-h flight under three common scenarios. The method, if coupled with information on the viability and the amount of infectious agent in the droplet, can aid in evaluating the infection risk. PRACTICAL IMPLICATIONS: The distribution of the infectious agents contained in the expiratory droplets of an infected occupant in an indoor environment is transient and non-uniform. The risk of infection can thus vary with time and space. The investigations developed methods to predict the spatial and temporal distribution of expiratory droplets, and the inhalation of these droplets in an aircraft cabin. The methods can be used in other indoor environments to assess the relative risk of infection in different zones, and suitable measures to control the spread of infection can be adopted. Appropriate treatment can be implemented for the zone identified as high-risk zones.  相似文献   

15.
This study experimentally examines and compares the dynamics and short‐term events of airborne cross‐infection in a full‐scale room ventilated by stratum, mixing and displacement air distributions. Two breathing thermal manikins were employed to simulate a standing infected person and a standing exposed person. Four influential factors were examined, including separation distance between manikins, air change per hour, positioning of the two manikinsand air distribution. Tracer gas technique was used to simulate the exhaled droplet nuclei from the infected person and fast tracer gas concentration meters (FCM41) were used to monitor the concentrations. Real‐time and average exposure indices were proposed to evaluate the dynamics of airborne exposure. The time‐averaged exposure index depends on the duration of exposure time and can be considerably different during short‐term events and under steady‐state conditions. The exposure risk during short‐term events may not always decrease with increasing separation distance. It changes over time and may not always increase with time. These findings imply that the control measures formulated on the basis of steady‐state conditions are not necessarily appropriate for short‐term events.  相似文献   

16.
Chen SC  Chang CF  Liao CM 《Indoor air》2006,16(6):469-481
Recently developed control measure modeling approaches for containing airborne infections, including engineering controls with respiratory protection and public health interventions, are readily amenable to an integrated-scale analysis. Here we show that such models can be derived from an integrated-scale analysis generated from three different types of functional relationship: Wells-Riley mathematical model, competing-risks model, and Von Foerster equation, both of the key epidemiological determinants involved and of the functional connections between them. We examine mathematically the impact of engineering control measures such as enhanced air exchange and air filtration rates with personal masking combined with public health interventions such as vaccination, isolation, and contact tracing in containing the spread of indoor airborne infections including influenza, chickenpox, measles, and severe acute respiratory syndrome (SARS). If enhanced engineering controls could reduce the basic reproductive number (R0) below 1.60 for chickenpox and 3 for measles, our simulations show that in such a prepared response with public health interventions would have a high probability of containing the indoor airborne infections. Combinations of engineering control measures and public health interventions could moderately contain influenza strains with an R0 as high as 4. Our analysis indicates that effective isolation of symptomatic patients with low-efficacy contact tracing is sufficient to control a SARS outbreak. We suggest that a valuable added dimension to public health inventions could be provided by systematically quantifying transmissibility and proportion of asymptomatic infection of indoor airborne infection. Practical Implications We have developed a flexible mathematical model that can help determine the best intervention strategies for containing indoor airborne infections. The approach presented here is scalable and can be extended to include additional control efficacies. If a newly emergent airborne infection should appear, the model could be quickly calibrated to data and intervention options at the early stage of the outbreak. Data could be provided from the field to estimate value of R0, the serial interval between cases, the distributions of the latent, incubation, and infectious periods, case fatality rates, and secondary spread within important mixing groups. The combination of enhanced engineering control measures and assigned effective public health interventions would have a high probability for containing airborne infection.  相似文献   

17.
18.
Abstract Infection risk assessment is very useful in understanding the transmission dynamics of infectious diseases and in predicting the risk of these diseases to the public. Quantitative infection risk assessment can provide quantitative analysis of disease transmission and the effectiveness of infection control measures. The Wells–Riley model has been extensively used for quantitative infection risk assessment of respiratory infectious diseases in indoor premises. Some newer studies have also proposed the use of dose‐response models for such purpose. This study reviews and compares these two approaches to infection risk assessment of respiratory infectious diseases. The Wells–Riley model allows quick assessment and does not require interspecies extrapolation of infectivity. Dose‐response models can consider other disease transmission routes in addition to airborne route and can calculate the infectious source strength of an outbreak in terms of the quantity of the pathogen rather than a hypothetical unit. Spatial distribution of airborne pathogens is one of the most important factors in infection risk assessment of respiratory disease. Respiratory deposition of aerosol induces heterogeneous infectivity of intake pathogens and randomness on the intake dose, which are not being well accounted for in current risk models. Some suggestions for further development of the risk assessment models are proposed.

Practical Implications

This review article summarizes the strengths and limitations of the Wells–Riley and the dose‐response models for risk assessment of respiratory diseases. Even with many efforts by various investigators to develop and modify the risk assessment models, some limitations still persist. This review serves as a reference for further development of infection risk assessment models of respiratory diseases. The Wells–Riley model and dose‐response model offer specific advantages. Risk assessors can select the approach that is suitable to their particular conditions to perform risk assessment.
  相似文献   

19.
Many common respiratory infectious diseases transmit readily among school-age children. In major epidemics, school closures and class suspensions may be implemented to attempt to control transmission in the community. However, such intervention measures have been subject to an extensive debate as well as questions of its effectiveness and adverse social impacts. In the meanwhile, engineering intervention methods are also available, but their impacts at the community level were not well studied. A better understanding of how different school interventions contribute to the airborne disease prevention can provide public health officials important information to design infection control strategies, in particular how engineering control methods such as ventilation are compared to other intervention methods. In this study a hypothetical indoor social contact network was constructed based on census and statistical data of Hong Kong. Detailed school contact structures were modeled and predicted. Influenza outbreaks were simulated within indoor contact networks, allowing for airborne transmission. Local infection risks were calculated from the modified Wells-Riley equation, and the transmission dynamics of the disease were simulated using the SEPIR model. Both school-based general public health interventions (such as school closures, household isolation) and engineering control methods (including increasing ventilation rate in schools and homes) were evaluated in this study. The results showed that among different school-based interventions, increasing ventilation rate together with household isolation could be as effective as school closure.  相似文献   

20.
C. Chen  B. Zhao 《Indoor air》2010,20(2):95-111
Abstract This study employs a numerical model to investigate the dispersion characteristics of human exhaled droplets in ventilation rooms. The numerical model is validated by two different experiments prior to the application for the studied cases. Some typical questions on studying dispersion of human exhaled droplets indoors are reviewed and numerical study using the normalized evaporation time and normalized gravitational sedimentation time was performed to obtain the answers. It was found that modeling the transient process from a droplet to a droplet nucleus due to evaporation can be neglected when the normalized evaporation time is <0.051. When the normalized gravitational sedimentation time is <0.005, the influence of ventilation rate could be neglected. However, the influence of ventilation pattern and initial exhaled velocity on the exhaled droplets dispersion is dominant as the airflow decides the droplets dispersion significantly. Besides, the influence of temperature and relative humidity on the dispersion of droplets can be neglected for the droplet with initial diameter <200 μm; while droplet nuclei size plays an important role only for the droplets with initial diameter within the range of 10 μm–100 μm.

Practical Implications

Dispersion of human exhaled droplets indoor is a key issue when evaluating human exposure to infectious droplets. Results from detailed numerical studies in this study reveal how the evaporation of droplets, ventilation rate, airflow pattern, initial exhaled velocity, and particle component decide the droplet dispersion indoor. The detailed analysis of these main influencing factors on droplet dispersion in ventilation rooms may help to guide (1) the selection of numerical approach, e.g., if the transient process from a droplet to a droplet nucleus due to evaporation should be incorporated to study droplet dispersion, and (2) the selection of ventilation system to minimize the spread of pathogen‐laden droplets in an indoor environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号