首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19-amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of approximately 130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.  相似文献   

2.
Cortactin is an actin-binding protein that contains several potential signaling motifs including a Src homology 3 (SH3) domain at the distal C terminus. Translocation of cortactin to specific cortical actin structures and hyperphosphorylation of cortactin on tyrosine have been associated with the cortical cytoskeleton reorganization induced by a variety of cellular stimuli. The function of cortactin in these processes is largely unknown in part due to the lack of information about cellular binding partners for cortactin. Here we report the identification of a novel cortactin-binding protein of approximately 180 kDa by yeast two-hybrid interaction screening. The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction. Since this protein represents the first reported natural ligand for the cortactin SH3 domain, we designated it CortBP1 for cortactin-binding protein 1. CortBP1 contains two recognizable sequence motifs within its C-terminal region, including a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. Northern and Western blot analysis indicated that CortBP1 is expressed predominately in brain tissue. Immunofluorescence studies revealed colocalization of CortBP1 with cortactin and cortical actin filaments in lamellipodia and membrane ruffles in fibroblasts expressing CortBP1. Colocalization of endogenous CortBP1 and cortactin was also observed in growth cones of developing hippocampal neurons, implicating CortBP1 and cortactin in cytoskeleton reorganization during neurite outgrowth.  相似文献   

3.
During Drosophila embryogenesis, the ventral epidermis dorsally expands and the left and right epithelial sheets meet and fuse along the dorsal midline. For this dorsal closure to occur, two PDZ domain proteins, Cno and ZO-1, are required. The dorsal epidermis remains open when the expression of ZO-1 and Cno are reduced simultaneously by hypomorphic mutations in the relevant loci. ZO-1 and Cno colocalize at adherens junctions in embryonic epithelia, and form a protein complex upon binding to each other. Genetic analysis showed that Cno is involved in the Jun N-terminal kinase (JNK) pathway for dorsal closure, as a modulator acting upstream of, or in parallel with, the small GTPase Drac1. The ZO-1-Cno complex may be involved in dynamic changes in cytoskeletal organization and cell adhesion during morphogenetic events associated with dorsal closure in the Drosophila embryo.  相似文献   

4.
During the development of the neuromuscular junction (NMJ), motoneurons grow to the muscle cell and the nerve-muscle contact triggers the development of both presynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of acetylcholine receptors (AChRs). Previous studies have shown that the activation of tyrosine kinases and the local assembly of an actin-based cytoskeletal specialization are involved in the development of both types of specializations. To understand the link between tyrosine phosphorylation and the assembly of the cytoskeleton, we examined the localization of cortactin in relationship to synaptic development. Cortactin is a 80/85 kD F-actin binding protein and is a substrate for tyrosine kinases. It contains a proline-rich motif and an SH3 domain and is localized at sites of active F-actin assembly. Using a monoclonal antibody against cortactin, its localization at developing NMJs in culture was observed. To understand the spatial and temporal relationship between cortactin and developing synaptic structures, cultured muscle cells and spinal neurons from Xenopus embryos were treated with beads coated with heparin-binding growth-associated molecule to induce the formation of AChR clusters and SV clusters and the localization of cortactin was followed by immunofluorescence. In untreated muscle cells, cortactin is often co-localized with spontaneously formed AChR clusters. After cells were treated with beads, cortactin became localized at bead-induced AChR clusters at their earliest appearance (1 h after the addition of beads). This association was most reliably detected at the early stage of the clustering process. On the presynaptic side, cortactin localization could be detected as early as 10 min after the bead-neurite contact was established. Cortactin-enriched contacts later showed concentration of F-actin (at 1 h) and clusters of SVs (at 24 h). These data suggest that cortactin mediates the local assembly of the cytoskeletal specialization triggered by the synaptogenic signal on both nerve and muscle.  相似文献   

5.
Human leukemic cell line K562 is induced to differentiate into the megakaryocytic lineage by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). We demonstrate here that TPA stimulation increases tyrosine phosphorylation of an 80-kDa protein at an early stage of megakaryocytic differentiation and that this 80-kDa protein is identical with cortactin. Since tyrosine kinase Syk was activated by TPA stimulation, we examined the possibility that cortactin is a potential substrate of Syk in K562 cells. TPA-induced tyrosine phosphorylation of cortactin was decreased profoundly by overexpression of dominant-negative Syk. Furthermore, cortactin was associated with Syk even before TPA stimulation. Since cortactin was previously referred as an 80/85-kilodalton pp60src substrate, we examined the association between Src and cortactin, whereas its association could not be detected. These data suggest that Syk phosphorylates cortactin in K562 cells upon TPA treatment.  相似文献   

6.
We report the identification and characterization of Dnrk (Drosophila neurospecific receptor kinase), a Drosophila gene encoding a putative receptor tyrosine kinase (RTK) highly related to the Trk and Ror families of RTKs. During Drosophila embryogenesis, the Dnrk gene is expressed specifically in the developing nervous system. The Dnrk protein possesses two conserved cysteine-containing domains and a kringle domain within its extracellular domain, resembling those observed in Ror family RTKs (Ror1, Ror2, and a Drosophila Ror, Dror). This protein contains the catalytic tyrosine kinase (TK) domain with two putative ATP-binding motifs, resembling those observed in another Drosophila RTK (Dtrk) that mediates homophilic cell adhesion. The TK domain of Dnrk, expressed in bacteria or mammalian cells, exhibits apparent autophosphorylation activities in vitro. The TK domain lacking the distal ATP-binding motif also exhibits autophosphorylation activity, yet to a lesser extent. In addition to its TK activity, there are several putative tyrosine-containing motifs that upon phosphorylation may interact with Src homology 2 regions of other signaling molecules. Collectively, these results suggest that Dnrk may play an important role in neural development during Drosophila embryogenesis.  相似文献   

7.
The Notch gene of Drosophila plays an important role in cell fate specification throughout development. The Notch protein contains a large extracellular domain of 36 EGF-like repeats as well as 3 Notch/lin-12 repeats and an intracellular domain with 6 cdc10/ankyrin repeats, motifs which are highly conserved in several vertebrate Notch homologues [1-7]. In this review we summarize the results of two recent studies which attempt to establish structure-function relationships of the various domains of the Notch gene product [8, 9]. The functions of various structural domains of the Notch protein in vivo were investigated using a series of deletion mutants which have been ectopically expressed either under the hsp70 heat-shock promoter or under the sevenless eye-specific promoter. Truncation of the extracellular domain of Drosophila Notch produces an activated receptor as judged by its ability to cause phenotypes matching those of gain-of-function alleles or duplications of the Notch locus [8]. Equivalent truncations of vertebrate Notch-related proteins have been associated with malignant neoplasms and other developmental abnormalities [3, 6, 10, 11]. In contrast, dominant negative phenotypes result from overexpression of a protein lacking most intracellular sequences. These results were extended by an analysis of activated Notch function at single-cell resolution in the Drosophila compound eye [9]. It was shown that while overexpression of full-length Notch in defined cell types has no apparent effects, overexpression of activated Notch in the same cells transiently blocks their proper cell-fate commitment, causing them to either adopt incorrect cell fates or to differentiate incompletely. Moreover, an activated Notch protein lacking the transmembrane domain is translocated to the nucleus, raising the possibility that Notch may participate directly in nuclear events.  相似文献   

8.
In Drosophila, planar cell polarity (PCP) signaling is mediated by the receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling also requires Dsh and may utilize DFz2 as a receptor. Using a heterologous system, we show that Dsh is recruited selectively to the membrane by Fz but not DFz2, and this recruitment depends on the DEP domain but not the PDZ domain in Dsh. A mutation in the DEP domain impairs both membrane localization and the function of Dsh in PCP signaling, indicating that translocation is important for function. Further genetic and molecular analyses suggest that conserved domains in Dsh function differently during PCP and Wg signaling, and that divergent intracellular pathways are activated. We propose that Dsh has distinct roles in PCP and Wg signaling. The PCP signal may selectively result in focal Fz activation and asymmetric relocalization of Dsh to the membrane, where Dsh effects cytoskeletal reorganization to orient prehair initiation.  相似文献   

9.
10.
Membrane-associated guanylate kinase homologs (MAGUKs) may play a role in cellular functions preventing tumorigenesis as indicated by the neoplastic phenotype caused by genetic loss of the MAGUK Dlg in Drosophila. To test this possibility, we examined the expression and subcellular localization of the tight junction MAGUK ZO-1, as well as the cell adhesion molecule E-cadherin, in paraffin-embedded breast cancer samples, using immunohistochemistry and confocal microscopy. As expected, normal tissue showed intense staining for ZO-1 at the position of the epithelial tight junctions, but this staining was reduced or lost in 69% of breast cancers analyzed (n = 48). In infiltrating ductal carcinomas (n = 38) there was a reduction in staining in 42% of well differentiated, in 83% of moderately differentiated and 93% of poorly differentiated tumors. ZO-1 staining was positively correlated with tumor differentiation (P = .011) and more specifically with the glandular differentiation of tumors (P = .0019). Reduction in ZO-1 staining was strongly correlated with reduced E-cadherin staining (P = 4.9 x 10(-5)). The results suggest that down-regulation of ZO-1 expression and its failure to accumulate at cell junctions may be causally related to cancer progression. To detect loss of heterozygosity, the ZO-1 gene tjp-1 was mapped relative to other markers in 15q13 and polymorphic markers flanking tjp-1 were identified. The marker D15S1019 showed loss of heterozygosity in 23% of informative tumors (n = 13). Loss of a tjp-1-linked marker suggests that genetic loss may, in some cases, be responsible for the reduction in ZO-1 expression in breast cancer.  相似文献   

11.
Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated by growth factors and oncogenes [3-5], although the underlying mechanisms are poorly understood as cellular proteins that interact with connexins have yet to be identified. The carboxy-terminal cytosolic domain of Cx43 contains several phosphorylation sites and potential signalling motifs. We have used a yeast two-hybrid protein interaction screen to identify proteins that bind to the carboxy-terminal tail of Cx43 and thereby isolated the zona occludens-1 (ZO-1) protein. ZO-1 is a 220 kDa peripheral membrane protein containing multiple protein interaction domains including three PDZ domains and a Src homology 3 (SH3) domain [6-9]. The interaction of Cx43 with ZO-1 occurred through the extreme carboxyl terminus of Cx43 and the second PDZ domain of ZO-1. Cx43 associated with ZO-1 in Cx43-transfected COS7 cells, as well as endogenously in normal Rat-1 fibroblasts and mink lung epithelial cells. Confocal microscopy revealed that endogenous Cx43 and ZO-1 colocalised at gap junctions. We suggest that ZO-1 serves to recruit signalling proteins into Cx43-based gap junctions.  相似文献   

12.
N-syndecan (syndecan-3) was previously isolated as a cell surface receptor for heparin-binding growth-associated molecule (HB-GAM) and suggested to mediate the neurite growth-promoting signal from cell matrix-bound HB-GAM to the cytoskeleton of neurites. However, it is unclear whether N-syndecan would possess independent signaling capacity in neurite growth or in related cell differentiation phenomena. In the present study, we have transfected N18 neuroblastoma cells with a rat N-syndecan cDNA and show that N-syndecan transfection clearly enhances HB-GAM-dependent neurite growth and that the transfected N-syndecan distributes to the growth cones and the filopodia of the neurites. The N-syndecan-dependent neurite outgrowth is inhibited by the tyrosine kinase inhibitors herbimycin A and PP1. Biochemical studies show that a kinase activity, together with its substrate(s), binds specifically to the cytosolic moiety of N-syndecan immobilized to an affinity column. Western blotting reveals both c-Src and Fyn in the active fractions. In addition, cortactin, tubulin, and a 30-kDa protein are identified in the kinase-active fractions that bind to the cytosolic moiety of N-syndecan. Ligation of N-syndecan in the transfected cells by HB-GAM increases phosphorylation of c-Src and cortactin. We suggest that N-syndecan binds a protein complex containing Src family tyrosine kinases and their substrates and that N-syndecan acts as a neurite outgrowth receptor via the Src kinase-cortactin pathway.  相似文献   

13.
The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.  相似文献   

14.
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

15.
The mature C-terminal signaling domain of the Drosophila Decapentaplegic proprotein (DPP) can be efficiently refolded from chaotrope-solubilized inclusion bodies with the aid of a membrane protein-solubilizing detergent, high concentrations (0.75-2 M) of NaCl, and low temperatures (5-15 degreesC). The disulfide-linked homodimeric product contains N-terminal heparin-binding sites that were utilized as intrinsic affinity tags to obtain a highly enriched preparation in one chromatographic step. A subsequent C4 reverse phase high pressure liquid chromatography step provides high purity, salt-free protein that is amenable to biophysical and structural studies at a yield of approximately 3 mg/liter of bacterial culture. The dimeric protein is correctly folded as determined by electrophoretic, spectroscopic, chemical, and proteolytic analyses. Refolded DPP is also bioactive as shown by induction of chondrogenesis in embryonic chick limb bud cells and by high affinity binding to Noggin, an antagonist of bone morphogenetic protein signaling. In contrast to bone morphogenetic proteins extracted from demineralized bone or overexpressed in cell culture, the refolded Escherichia coli-expressed protein is not glycosylated at a conserved N-linked site and is therefore homogeneous. The C-terminal domain dimer is more hydrophobic and thus less soluble than its unfolded or partially folded forms, necessitating highly solubilizing conditions for recovery after folding in vitro. Hence solubilization of the mature ligand may be one of the principal roles of the large (250-400 amino acids) N-terminal prodomains of transforming growth factor-beta superfamily members, shown to act as intramolecular chaperones in vivo.  相似文献   

16.
17.
18.
19.
Abl is an axonal tyrosine kinase that has yet to be clearly linked to a receptor; Notch is a receptor for which the signaling pathway remains incompletely understood. We show here that Notch and abl mutations interact synergistically to produce synthetic lethality and defects in axon extension. Surprisingly, we cannot account for these axonal aberrations on the basis of changes in cell identity. We show, moreover, that Notch is present in the growth cones of extending axons, and that the Abl accessory protein Disabled binds to a signaling domain of Notch in vitro. We therefore speculate that Disabled and Abl may play a role in Notch signaling in Drosophila axons, perhaps by binding to the Notch intracellular domain.  相似文献   

20.
Induction of the adaptive immune response depends on the expression of co-stimulatory molecules and cytokines by antigen-presenting cells. The mechanisms that control the initial induction of these signals upon infection are poorly understood. It has been proposed that their expression is controlled by the non-clonal, or innate, component of immunity that preceded in evolution the development of an adaptive immune system in vertebrates. We report here the cloning and characterization of a human homologue of the Drosophila toll protein (Toll) which has been shown to induce the innate immune response in adult Drosophila. Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kappaB pathway. We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kappaB and the expression of NF-kappaB-controlled genes for the inflammatory cytokines IL-1, IL-6 and IL-8, as well as the expression of the co-stimulatory molecule B7.1, which is required for the activation of naive T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号