首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A barium‐containing three‐way automotive emission catalyst was submitted to a NOx storage step in flowing lean gas mixture containing 340 ppm NO and 8 vol% O2 in helium. NOx release was carried out in the 250–550°C temperature range, either in pure helium or in the presence of a 10 vol% CO2 in helium mixture. It was shown that at 450–550°C all of the stored NOx on the barium trap can be released fastly in the CO2‐containing gas mixture or, after a longer time, in pure helium: these data show that NOx release can occur in the absence of a reducing agent. The NOx release was not complete at 350°C and did not occur at 250°C. The assisting effect of CO2 as regards to NOx release was interpreted in terms of the existence of the CO2,gas + *NO2,stored ⇌ *CO2,stored + NO2,gas equilibrium, suggesting the competitive storage of CO2 and NO2 for a unique type of barium storage sites (*). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
NOx trapping capability of NOx storage–reduction commercial catalysts (4–9 wt% Ba-containing three-way catalysts) was compared to that of bulk barium carbonate and alumina-supported barium carbonate from Rhodia (9 wt% Ba). These samples were characterized by infrared spectroscopy, X-ray diffraction, HRTEM and EDX. It was shown that bulk barium carbonate was partially converted to barium nitrate in flowing NO/O2 mixture without CO2. Thermodynamic calculation showed that bulk barium nitrate could not form in the presence of CO2-containing gas exhausts. Using HRTEM and EDX, it was evidenced that barium was engaged as either large barium carbonate crystals or highly dispersed barium species on the alumina support. NOx storage experiments using gas mixtures containing or not O2 or CO2, confirmed firstly that NO was stored on barium trap only via NO2 and secondly that NO2 and CO2 are competing for the same barium trapping sites. The fact that no significant amount of stored NOx could be evidenced in the bulk barium carbonate, suggested that over the catalytic surface, the well dispersed barium phase can play an important role in the NOx trapping properties of these catalysts.  相似文献   

3.
Olsson  Louise  Jozsa  Peter  Nilsson  Mikael  Jobson  Edward 《Topics in Catalysis》2007,42(1-4):95-98
A commercial NOx storage catalyst (Pt, BaO and alumina containing) was investigated by temperature programmed desorption (TPD) experiments in the temperature range 100–400 °C. The catalyst stored a substantial amount of NOx at 100 °C using NO + O2. Nitrites or loosely bound NO species are suggested for this storage, since no NO was oxidised at this low temperature. In addition, the released NOx during the temperature ramp consisted of mainly NO and at lower temperatures the NO2 dissociation is limited. Water and CO2 was found to decrease the storage substantially, 92% for the NO + O2 adsorption at 100 °C. The total storage for 60 min using NO2 + O2 at 200 °C was similar when introducing CO2 and H2O. However, the initial total uptake of NOx was decreased. Initially we probably formed loosely bound NOx species, which likely are strongly influenced by water and CO2. After longer time periods are barium nitrates probably formed and they can remove the carbonates by forming stable nitrates, thus resulting in the same total uptake of NOx.  相似文献   

4.
The storage of NO x under lean conditions in model NO x storage catalysts as well as the deactivation by sulphur have been studied. We find that NO2 plays an important role in the storage mechanism as an oxidising agent. Two different mechanisms for this are discussed: the formation of surface peroxides and the oxidation of nitrites to nitrates. FTIR studies show that NO x is stored as surface nitrates. The sulphur deactivation is found to be more severe when SO2 is added during the rich phase than when SO2 is added during the lean period. FTIR shows the formation of bulk sulphates both under lean and rich conditions.  相似文献   

5.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

6.
The role of the acidic support in ion-exchanged cobalt-zeolite, lean NOx catalysts has been determined by studying the individual steps in the selective reduction pathway. At a GHSV of 10,000 and reaction temperatures below 400°C, NO oxidation is not sufficiently rapid to obtain equilibrium over, for example, 1–4 wt% Co-mordenite catalysts. The NO oxidation rate increases in the order H+Co2+ Co oxide, and neither the number, nor the strength of the acid sites affects the specific rate of the Co2+ ions. For reduction of NO2 by propylene at 300°C and methane at 400°C, the formation of N2 is suggested to occur at support protons sites. In addition, the rate of N2 formation increases linearly with an increase in the number of acid sites, and the specific activity increases with an increase in acid strength. Cobalt (2+) ions do not contribute significantly to the formation of N2, but do non-selectively reduce NO2 to NO. It is proposed that the formation of N2 occurs by protonation of the reducing agent followed by attack of the carbocation by gas phase NO2. Thus, the selective reduction of NO requires two catalytic functions, metal and acid sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Erkfeldt  Sara  Jobson  Edward  Larsson  Mikael 《Topics in Catalysis》2001,16(1-4):127-131
One possible way to reduce NO x in lean exhausts is by using NO x trap catalysts. This paper addresses storage of NO x on such catalysts at temperatures below the catalyst light-off. Experiments carried out on commercial samples in synthetic exhausts revealed a large capacity for storage of NO x when NO2 was added at temperatures below 150°C. In contrast, when NO was added instead, no storage took place. CO was found to decrease the storage by reacting with NO2 and forming NO and CO2. Propene inhibited the reaction between NO2 and CO and therefore gave rise to larger NO x storage when CO was present. The paper concludes with a discussion of a possible mechanism for the storage of NO x at low temperatures.  相似文献   

8.
Basile  F.  Gambatesa  A.  Fornasari  G.  Livi  M.  Vaccari  A. 《Topics in Catalysis》2007,42(1-4):165-169
A catalyst for NOx storage/reduction was prepared to improve the activity of Ba–Pt/γ-Al2O3 by replacing Ba with a mixture of Ba and Mg. The catalyst was prepared by impregnating Pt and then co-impregnating Ba and Mg (Mg:Ba molar ratio = 1) on commercial γ-Al2O3. The tests have been carried out in the presence of CO2 at temperatures between 200 and 400 °C in order to understand the role of both the feed and various alkaline-earth metals. The storage capacity of the two catalysts was different like the mechanism in the reduction process.  相似文献   

9.
Platinum group metal catalysts have been investigated for the formation of NH3 from NO + H2 at low temperatures in the absence and presence of CO. Although CO inhibits the formation of NH3, substantial amounts are still observed with a Pt catalyst. By combining Pt with a support (ceria–zirconia) that has low temperature NOx storage characteristics it has been shown in transient experiments that NH3 can be formed and stored in situ under rich conditions, and may then be used to reduce NOx under lean burn conditions.  相似文献   

10.
TiO2 and SnO2 were studied as possible supports for HPW in order to produce a new type of sorbent for NO x trap applications. SnO2 was synthesised by various inorganic methods while TiO2 was purchased commercially. The sorption capacities and efficiencies depend upon the BET surfaces. Best performances were obtained with support with large pores where the crystalline structure of HPW is maintained. The optimal loading of HPW is ca. 50% with BET surface in the range 20–80 m2g–1.  相似文献   

11.
The NO x storage-reduction catalyst (NSR catalyst) is poisoned by SO2 caused by fuel sulfur, thus its activity is reduced. In order to improve the NSR catalyst, the sulfur poisoning phenomenon has been analyzed. Based on this result, we developed TiO2 and Rh/ZrO2 to promote the sulfur desorption. The developed catalyst has made remarkable progress in its sulfur tolerance, about 50% improvement in NO x purification performance compared with the conventional one.  相似文献   

12.
Mahzoul  H.  Gilot  P.  Brilhac  J.-F.  Stanmore  B.R. 《Topics in Catalysis》2001,16(1-4):293-298
A conventional NO x -trap catalyst containing platinum, rhodium, barium and lanthanum was conditioned with oxygen at 500°C, preloaded with NO under standard oxidising conditions and then subjected to regeneration with the reductants H2, CO and C3H6, either alone or as a mixture. Hydrogen is the most efficient reductant in terms of NO x conversion efficiency and reductant usage efficiency. There is a temperature optimum for CO between 300 and 400°C and a catalyst loading optimum (mols reductant added)/(mols NO x adsorbed) between 1.5 and 3.0. The behaviour of the catalyst towards sulphur poisoning was examined in supplementary trials with the adsorption of SO2 in the presence or absence of water vapour. When water is not present in both adsorption and reduction steps, very stable sulphates are formed, unattacked by reductants even at 1000°C. Sulfates are more easily reduced when water is present in the reductant mixture.  相似文献   

13.
Investigations of the aging behavior induced by high temperatures coupled with oxidizing atmosphere of model NO x storage systems Ba/Al2O3 and Ba/CeO2 are reported in this paper. The samples were prepared, calcined and exposed to temperatures between 500 and 1000 °C in air for 12 h for thermal aging. Samples were characterized with XRD, HRSEM, DSC-TGA-MS and BET analyses. In XRD investigations of all model systems calcined at 500 °C for 2 h, the NO x storage component was present in form of BaCO3. The release of CO2 as a result of the decarbonization of the NO x storage component at increased temperatures was verified by thermogravimetric investigations. In the case of Ba/Al2O3, already during calcination a partial reaction of the NO x storage component with Al2O3 resulting in the formation of barium aluminate was observed. In the model system Ba/CeO2 the decomposition of the barium carbonate started above 780 °C and the formation of a barium cerium mixed oxide was observed. The presence of the barium containing NO x storage component has a strong influence on the specific surface area of the model NO x storage systems. The morphology and crystallite size of CeO2 modified with the barium containing NO x storage component exhibited distinct changes compared to the unmodified oxide. The NO x storage efficiency determined by model gas tests of freshly prepared and engine aged model NO x storage catalysts correlates well with the above described observations.  相似文献   

14.
Flow reactor experiments and X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the importance of platinum oxide formation on Pt/BaO/Al2O3 NO x storage catalysts during reactions conditions. The reaction studied was NO(g) + 1/2 O2(g) NO2(g). During NO2 exposure of the catalyst the NO2 dissociation rate decreased during the reaction. This activity decrease with time was also studied with XPS and it was found to be due to platinum oxide formation. The influence of sulphur exposure conditions on the performance of the NO x storage catalysts was studied by exposing the samples to lean and/or rich gas mixtures, simulating the conditions in a mixed lean application, containing SO2. The main results show that all samples are sensitive to sulphur and that the deactivation proceeds faster when SO2 is present in the feed under rich conditions than under lean or continuous SO2 exposure. Additionally, the influence of the noble metals present in the catalysts was investigated regarding sulphur sensitivity and it was found that a combination of platinum and rhodium seems to be preferable to retain high performance of the catalyst under SO2 exposure and subsequent regeneration. Finally, the behaviour of micro-fabricated model NO x storage catalysts was studied as a function of temperature and gas composition with area-resolved XPS. These model catalysts consisted of a thin film of Pt deposited on one-half of a BaCO3 pellet. It was found that the combination of SO2 and O2 resulted in migration of Pt on the BaCO3 support up to one mm away from the Pt/BaCO3 interface.  相似文献   

15.
NO x sorption capacities and efficiencies were measured on a new type of sorbent formed by 12-tungstophosphoric acid (HPW) supported on carbon nanotubes. On such a system, the sorption of both NO and NO2 was observed but compared with HPW alone, a complementary sorption of NO x is possible leading to a capacity of 25 mg/gHPW at 300 °C with an efficiency of 50%. The sorption results from the formation of a [H+(NO2 ,NO+)] complex on HPW and an additional mode of adsorption by a free-nitrate which was identified by the bands at 2261, 1384 and 1295 cm–1 using infrared spectroscopy.  相似文献   

16.
Li  Yuejin  Roth  Stan  Dettling  Joe  Beutel  Tilman 《Topics in Catalysis》2001,16(1-4):139-144
A NO x trap catalyst was studied in a laboratory reactor under simulated diesel passenger car conditions. The effects of lean/rich duration and the nature of reductant are investigated. At 300°C, the average NO x conversion decreases with increasing lean duration; conversely the NO x conversion increases with increasing rich duration. The NO x conversion at this temperature was found to be a direct function of reaction stoichiometry. That is, the quantity of trapped NO x under lean conditions must be balanced by the quantity of reductant during the rich trap regeneration step. At extreme temperatures, other factors, reaction kinetics (at lower temperatures) and NO x storage capacity (at higher temperatures), dominate the NO x conversion process. Overall, carbon monoxide was found to be the most effective reductant. Hydrocarbon, e.g., C3H6, is effective at higher temperatures (T>350°C), while H2 is more efficient than other reductants at low temperatures (T<200°C). The individual steps of the NO x conversion process are discussed.  相似文献   

17.
The mechanism of selective catalytic reduction (SCR) of NOx with NH3 over Fe/MFI was studied using in situ FTIR spectroscopy. Exposing Fe/MFI first to NH3 then to flowing NO + O2 or using the reversed sequence, invariably leads to the formation of ammonium nitrite, NH4NO2. In situ FTIR results in flowing NO + NH3 + O2 at different temperatures show that NH3 is strongly adsorbed and reacts with impinging NOx. The intensity of the NH4NO2 bands initially increases with temperature, but passes through a maximum at 120 °C because the nitrite decomposes to N2 + H2O. The mechanistic model rationalizes that the consumption ratio of NO and NH3 is close to unity and that the effect of water vapor depends on the reaction temperature. At high temperature H_2O enhances the rate because it is needed to form NH4NO2. At low temperature, when adsorbed H2O is abundant it lowers the rate because it competes with NOx for adsorption sites.  相似文献   

18.
Barium-containing NO x storage catalyst showed serious deactivation under thermal exposure at high temperatures. To elucidate the thermal deterioration of the NO x storage catalyst, four types of model catalyst, Pt/Al2O3, Ba/Al2O3, Pt–Ba/Al2O3, and a physical mixture of Pt/Al2O3 + Ba/Al2O3 were prepared and their physicochemical properties such as BET, NO TPD, TGA/DSC, XRD, and XPS were evaluated while the thermal aging temperature was increased from 550 to 1050°C. The fresh Pt–Ba/Al2O3 showed a sorption capacity of 3.35 wt%/g-cat. but the aged one revealed a reduced capacity of 2.28 wt%/g-cat. corresponding to 68% of the fresh one. It was found that this reduced sorption capacity was directly related to the deterioration of the NO x storage catalyst by thermal aging. The Ba on Ba/Al2O3 and Pt–Ba/Al2O3 catalysts began to interact with alumina to form Ba–Al solid alloy above 600°C and then transformed into stable BaAl2O4 having a spinel structure. However, no phase transition was observed in the Pt/Al2O3 catalyst having no barium component, even after aging at 1050°C.  相似文献   

19.
Arena  G.E.  Bianchini  A.  Centi  G.  Vazzana  F. 《Topics in Catalysis》2001,16(1-4):157-164
The transient reactivity and surface phenomena of storage and conversion of NO x species on Pt(1%)–Me/Al2O3 catalysts, where Me = Ba, Ce and Cu, were studied by the RWF (rectangular wavefront) method. The Me component has a relevant influence on the processes of surface storage and transformation. The reduction of NO x by propene in the presence of oxygen is promoted by adding Cu to a Pt/Al2O3 catalyst, while cerium promotes transient conversion of NO in the absence of propene, but inhibits the reduction of NO x in the presence of propene. Copper is suggested to be a promising element to add together with Ba for new NO x storage-reduction catalysts due to its capacity to act both as a storage element and as promoter for NO x reduction.  相似文献   

20.
Han  Pyung-Hyun  Lee  Yong-Kul  Han  Sang-Min  Rhee  Hyun-Ku 《Topics in Catalysis》2001,16(1-4):165-170
The effect of various parameters on the NO x conversion over NO x storage and reduction catalysts supported on alumina was investigated. The Pt/BaO/Al2O3 catalyst exhibited a higher NO x reduction activity than the Pt/Al2O3 catalyst under the static and cycling conditions. The activity of Pt/BaO/Al2O3 catalyst was improved in the cycled feedstream. The Pt/SrO/Al2O3 was found to have as high activity as Pt/BaO/Al2O3 for NO x reduction. In order to achieve effective reduction of NO x , NO x storage in the form of Me(NO3)2 (Me = Ba or Sr) is more favorable than other nitrates and the rich condition should be chosen in such a way that the sorption capacity can be fully regenerated at a fast rate and the inhibition effect by strongly adsorbed molecules derived from C3H6 and CO can be minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号