首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cefsulodin sodium (SCE-129, CGP-7174/E), active in minimum inhibitory concentrations (MICs) of 0.5 to 64 microgram/ml, was about 16- to 32-fold more active than carbenicillin against Psuedomonas aeruginosa. It was also active against P. diminuta, P. maltophilia, P. paucimobilis, and P. pseudoalcaligenes (MICs of 1 to 32 microgram/ml) but not against other species of Pseudomonas or other gram-negative bacteria. Except with highly carbenicillin-resistant isolates, MICs of cefsulodin for P. aeruginosa were little affected by an increase in the inoculum. With a small inoculum, minimum bactericidal concentrations (MBCs) were the same as or twice the MIC, but increasing the inoculum had a greater effect on the MBC than on the MIC. Cefsulodin was not hydrolyzed by the beta-lactamase induced in P. aeruginosa by growth in the presence of benzylpenicillin and was a poor substrate for beta-lactamases from Enterobacter cloacae and Proteus morganii. However, it was hydrolyzed, albeit slowly, by the beta-lactamase produced by most of our highly carbenicillin-resistant isolates of P. aeruginosa and by TEM-type beta-lactamases.  相似文献   

2.
Biological and physicochemical properties of BL-S786 were compared with those of cephalothin, cephaloridine, and cefazolin. With few exceptions, BL-S786 was more active than the reference compounds against major gram-negative pathogenic species and its antibacterial spectrum was broader than that of cephalosporins currently available for clinical use. Although BL-S786 was generally less active than the control cephalosporins against gram-positive pathogens, it inhibited their growth at concentrations that should readily be achieved in humans after standard parenteral dosage. Streptococcus faecalis, a species relatively unsusceptible to cephalosporins in general, was an exception. BL-S786 was an effective bactericidal agent for strains of various gram-negative organisms. After intramuscular administration to mice, BL-S786 achieved high concentrations in blood, and its biological half-life was longer than that of the other three cephalosporins.  相似文献   

3.
The activity of cefamandole was comparable to that of cephalothin, cefazolin, and cephaloridine against Staphylococcus aureus, Streptococcus pyogenes, and Diplococcus pneumoniae. In contrast, cefamandole was considerably more active than cephalothin, cefazolin, or cephaloridine against gram-negative facultative bacilli, including Haemophilus influenzae, the most striking disparities being noted with indole-positive Proteus and Enterobacter. Bacteroides fragilis was more susceptible to cefoxitin than to cefamandole or cefazolin (median minimal inhibitory concentration, approximately 8, 32, and 32 mug/ml, respectively); cephalothin exhibited still less activity against this species. The majority of other anaerobes were inhibited by relatively low concentrations of all four cephalosporins. The results indicate a potentially valuable role for cefamandole against facultative gram-negative bacilli, including H. influenzae, but no exceptional activity against anaerobes.  相似文献   

4.
The in vitro activity of each of two oral [cefatrizine (BL-S640), cephalexin] and three parenteral (cefamandole, cefazolin, cephapirin) cephalosporin antibiotics was compared with that of cephalothin against 168 clinical isolates of gram-negative and gram-positive bacteria selected as resistant to 20 mug of cephaloridine per ml on the basis of agar dilution susceptibility test data. Each of the five other cephalosporins inhibited a greater percentage of gram-negative bacillary isolates than did cephalothin or cephaloridine, with minimal inhibitory concentration values ranging 2- to 50-fold lower. Significant differences between minimal inhibitory concentrations of the compounds tested were also observed in tests against strains of Streptococcus faecalis and of methicillin-resistant Staphylococcus aureus. Potential advantages of including more than a single cephalosporin antibiotic in the panel of antibiotics used for routine susceptibility testing, suggested by these observations, are discussed.  相似文献   

5.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 704 bacterial strains isolated from patients with urinary tract infections (UTIs) in 11 hospitals during the period of June 1995 to May 1996. Of the above bacterial isolates, Gram-positive bacteria accounted for 29.8% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 70.2% and most of them were Escherichia coli. Susceptibilities of several isolated bacteria to antimicrobial agents were as followed; 1. Enterococcus faecalis Ampicillin (ABPC) and imipenem (IPM) showed the highest activities against E. faecalis isolated from patients with UTIs. The MIC90S of them were 1 microgram/ml. Vancomycin (VCM) and piperacillin (PIPC) were also active with the MIC90S of 2 micrograms/ml and 4 micrograms/ml, respectively. The others had low activities with the MIC90S of 16 micrograms/ml or above. 2. Staphylococcus aureus including MRSA VCM showed the highest activities against S. aureus isolated from patients with UTIs. Its MIC90 was 1 microgram/ml against both S. aureus and MRSA. Arbekacin (ABK) was also active with the MIC90 of 2 micrograms/ml. The other except minocycline (MINO) had very low activities with the MIC90S of 64 micrograms/ml or above. 3. Staphylococcus epidermidis ABK and MINO showed the strongest activities against S. epidermidis isolated from patients with UTIs. The MIC90S of them were 0.25 microgram/ml. VCM was also active with the MIC90 of 1 microgram/ml. The MIC90S of cephems ranged from 2 micrograms/ml to 16 micrograms/ml in 1994, but they ranged from 8 micrograms/ml to 128 micrograms/ml in 1995. These results indicated that some resistances existed among S. epidermidis to cephems. 4. Streptococcus agalactiae All drugs except gentamicin (GM) were active against S. agalactiae. ABPC, cefmenoxime (CMX), IPM, erythromycin (EM), clindamycin (CLDM) and clarithromycin (CAM) showed the highest activities. The MICs for all strains were lower than 0.125 microgram/ml. The MIC90S of the others were 2 micrograms/ml or below. 5. Citrobacter freundii IPM showed the highest activity against C. freundii isolated from patients UTIs. Its MIC90 was 1 microgram/ml. GM was also active with the MIC90 of 2 micrograms/ml. Cefpirome (CPR), cefozopran (CZOP) and amikacin (AMK) were also active with the MIC90S of 4 micrograms/ml. Penicillins and cephems except CMX, CPR and CZOP showed low activities with MIC90S of 256 micrograms/ml or above. 6. Enterobacter cloacae IPM showed the highest activity against E. cloacae. The MICs for all strains were equal to or lower than 1 microgram/ml. MINO and tosufloxacin (TFLX) were also active with the MIC90S of 8 micrograms/ml. Penicillins and cephems except CPR and CZOP showed lower activities with the MIC90S of 256 micrograms/ml or above. 7. Escherichia coli. Most of the antimicrobial agents were active against E. coli. Particularly CPR, CZOP and IPM showed the highest activities against E. coli. The MICs for all strains were equal to or lower than 0.5 microgram/ml. CMX and TFLX were also active with the MIC90S of 0.125 microgram/ml or below. Penicillins were slightly active with MIC90S of 128 micrograms/ml or above. 8. Klebsiella pneumoniae K. pneumoniae was susceptible to all drugs except penicillins, with MIC90S of 2 micrograms/ml or below. Carumonam (CRMN) had the strongest activity against K. pneumoniae, the MICs for all strains were equal to or lower than 0.125 microgram/ml. Comparing with the result of 1994, the sensitivities of K. pneumoniae against all drugs had obviously changed into a better state. For example, the MIC90S of cephems ranged from 0.25 microgram/ml to 16 micrograms/ml in 1994, but they were all lower than 2 micrograms/ml in 1995. 9. Proteus mirabilis P. mirabilis was susceptible to a majority of drugs. CMX, ceftazidime (CAZ), cefixime (CFIX), and CRMN showed the highest activities against P. mirabilis isolated from patients with UTIs. MICs of CRMN for all  相似文献   

6.
Capnocytophaga (Bacteroides ochraceus, Center for Disease Control biogroup DF-1) is associated with sepsis in granulocytopenic patients and is isolated in large numbers from the affected periodontal pockets in patients with juvenile periodontosis. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of 17 antimicrobial agents for 13 strains of Capnocytophaga organisms were determined. In addition, the ratio of the MBC to the MIC for each antimicrobial agent was determined for each strain. At concentrations of 1 microgram/ml or less, penicillin, ampicillin, carbenicillin, erythromycin, and clindamycin killed 90% of the strains. At concentrations of 3.12 microgram/ml or less, tetracycline, metronidazole, cefoxitin, and chloramphenicol killed 90% of the strains. None of the aminoglycosides tested demonstrated antibacterial activity at 50 microgram/ml. Penicillin, ampicillin, carbenicillin, and cefoxitin exhibited MBC/MIC ratios of 4 or less with all strains. Erythromycin, tetracycline, and metronidazole exhibited MBC/MIC ratios of 4 or less for 12 of 13 strains. The MICs of cephalothin and cefazolin for 90% of the strains were 25 and 50 microgram/ml, respectively. The MBC/MIC ratios for these drugs were 4 or less for 12 of 13 and 7 of 13 strains, respectively. The MIC of cefamandole for 90% of the strains was 3.12 microgram/ml; however, only nine strains had an MBC/MIC ratio of 4 or less.  相似文献   

7.
Ceftezole, a new cephalosporin antibiotic similar to cefazolin, has the following chemical structure: (6R,7R)-8-oxo-7[2-(1H-tetrazol-1-yl)acetamido]-3-[(1,3,4-thiadiazol-2-ylthio)methyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-carboxylic acid. Ceftezole was found to be a broad-spectrum antibiotic, active in vitro against many species of gram-positive and gram-negative bacteria except Pseudomonas aeruginosa, Serratia marcescens and Proteus vulgaris. The activity of ceftezole against clinical isolates of Escherichia coli and Klebsiella spp. appeared to be nearly equal to that of cefazolin and higher than those of cephaloridine and cephalothin. Cross-resistance was observed between ampicillin and cephaloridine, but not between ampicillin and ceftezole, in susceptibility tests on clinical isolates of P. mirabilis. The in vitro activity was little affected by the inoculum size, the presence of human serum or the test medium. Ceftezole exhibited apparent bactericidal activity at the concentrations above the minimum inhibitory concentration (MIC) against both S. aureus and E. coli. The development in vitro of resistance by S. aureus 209p and E. coli NIHJ to ceftezole after 16 transfers was similar to or somewhat slower than that to other drugs tested. Ceftezole was relatively stable in nutrient broth and minimally degraded in the serum or tissue homogenates of rats. Ceftezole, in a single subcutaneous administration, exhibited somewhat less efficacy in mice against intraperitoneal infections with Streptococcus pyogenes, S. pneumoniae, E. coli, K. pneumoniae or P. mirabilis than either cephaloridine or cefazolin. However, ceftezole exhibited efficacy similar to that of cephaloridine or cefazolin when administered in three doses. Furthermore, ceftezole was as effective as cefazolin in the treatment of experimental abscesses in mice caused by subcutaneous inoculation with S. aureus.  相似文献   

8.
We studied the relationship between in vitro bacteriological parameters [minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and killing rate, defined as the reduction in the inoculum within 1, 3 or 6 hr] and in vivo activity of amoxicillin against 12 strains of Streptococcus pneumoniae, with penicillin MICs of < 0.01 to 16 micrograms/ml, in a cyclophosphamide-induced neutropenic murine pneumonia model. Dose-response curves were determined for amoxicillin against each strain, and three quantitative parameters of in vivo amoxicillin activity were defined, i.e., maximal attainable antimicrobial effect attributable to the drug [i.e., reduction in log colony-forming units (CFU) per lung, compared with untreated controls], dose required to reach 50% of maximal effect and dose required to achieve a reduction of 1 log CFU/lung. We demonstrated a highly significant correlation between the dose required to reach 50% of maximal effect and MIC (Spearman r = 0.98, P < .0001) or MBC (Spearman r = 0.95, P < .0001) for amoxicillin against strains of S. pneumoniae with a wide range of amoxicillin MICs (0.01-8 micrograms/ml). Significant correlations between the dose required to achieve a reduction of 1 log CFU/lung and MIC (Spearman r = 0.98, P < .0001) or MBC (Spearman r = 0.95, P < .0001) were also observed. In contrast, there were no significant correlations between the maximal attainable antimicrobial effect attributable to the drug and MIC, MBC or killing rate or between killing rate and the dose required to reach 50% of maximal effect or the dose required to achieve a reduction of 1 log CFU/lung. We conclude that in vitro susceptibility test results (MICs and MBCs) correlated well with in vivo amoxicillin activity against pneumococcal strains, including highly penicillin-resistant strains, in this animal model. Furthermore, these data suggest that the estimated MIC breakpoints for amoxicillin against S. pneumoniae would be 2 micrograms/ml for intermediate-resistant and 4 micrograms/ml for resistant, although this remains to be confirmed in clinical studies.  相似文献   

9.
The in vitro antibacterial activity of nine cephalosporins (cephalothin, cephaloridine, cephalexin, cefazolin, cefamandole, cefuroxime, cefatrizine, cefoxitin, and cefazaflur) was determined against 344 strains of Enterobacteriaceae and 99 nonfermentative gram-negative bacilli. Cefamandole, cefazaflur, and cefuroxime were the most active cephalosporins against the Enterobacteriaceae (with the exception of Serratia marcescens). However, cefoxitin was the only cephalosporin that inhibited all 30 S. marcescens strains in a concentration of 16 mug/ml and was by far the most active compound against selected cephalothin-resistant strains of Escherichia coli, Klebsiella, and Proteus mirabilis. Acinetobacter spp. were inhibited best by cefuroxime, but none of the cephalosporins had appreciable activity against the Pseudomonas spp.  相似文献   

10.
The in vitro activity of the new fluoroquinolone CP-99,219 [7-(3-azabicyclo[3.1.0]hexyl)naphthyridone] was compared with those of four other quinolones against 541 gram-negative, 283 gram-positive, and 70 anaerobic bacterial isolates. CP-99,219 inhibited 90% of many isolates in the family Enterobacteriaceae at a concentration of < or = 0.25 micrograms/ml (range, < 0.008 to 1 microgram/ml), an activity comparable to those of tosufloxacin and sparfloxacin and two times greater than that of temafloxacin. Ninety percent of the Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Serratia marcescens isolates were inhibited by 0.5 to 2 micrograms of CP-99,219 per ml. CP-99,219 inhibited 90% of the Pseudomonas aeruginosa and Haemophilus influenzae isolates at 1 and 0.015 micrograms/ml, respectively. The compound inhibited methicillin-susceptible Staphylococcus aureus at 0.06 micrograms/ml, whereas a ciprofloxacin concentration of 1 microgram/ml was required to inhibit these organisms. CP-99,219 inhibited 90% of methicillin-resistant S. aureus isolates at a concentration of < or = 4 micrograms/ml, while ciprofloxacin and temafloxacin had MICs against these isolates of > 16 micrograms/ml. Streptococci were inhibited by < or = 0.25 micrograms/ml, an activity comparable to that of tosufloxacin. CP-99,219 was eight times more active than ciprofloxacin against Streptococcus pneumoniae. Bacteroides species were inhibited by CP-99,219 at a concentration of 2 micrograms/ml, whereas inhibition of these species required 4- and 16-microgram/ml concentrations of tosufloxacin and ciprofloxacin, respectively. The MBCs of CP-99,219 ranged from two to four times the MICs, and inoculum size had a minimal effect on MIC. CP-99,219 was active against P. aeruginosa at pH 5.5, with only a fourfold increase in MIC compared with values obtained at pH 7.5. The addition of up to 9 mM Mg(2+) increased the MIC range from 0.03 to 0.06 microgram/ml to 0.12 to 0.5 microgram/ml. In view of its excellent in vitro activity against both gram-positive and gram-negative bacteria, CP-99,219 merits further study to determine it's clinical pharmacologic properties and potential for therapeutic use.  相似文献   

11.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 680 bacterial strains isolated from patients with urinary tract infections (UTIs) in 10 hospitals during the period of June 1996 to May 1997. Of the above bacterial isolates, Gram-positive bacteria accounted for 30.4% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 69.6% and most of them were Escherichia coli. Susceptabilities of several isolated bacteria to antimicrobial agents were as followed; 1. Enterococcus faecalis Ampicillin (ABPC) showed the highest activity against E. faecalis isolated from patients with UTIs. Its MIC90 was 1 microgram/ml. Imipenem (IPM) and vancomycin (VCM) were also active with the MIC90S of 2 micrograms/ml. The others had low activities with the MIC90S of 16 micrograms/ml or above. 2. Staphylococcus aureus including MRSA Arbekacin (ABK) and VCM showed the highest activities against both S. aureus and MRSA isolated from patients with UTIs. The MIC90S of them were 1 or 2 micrograms/ml. The others except minocycline (MINO) had low activities with the MIC90S of 32 micrograms/ml or above. 3. Staphylococcus epidermidis ABK and VCM showed the strongest activities against S. epidermis isolated from patients with UTIs. The MICs for all strains were equal to or lower than 2 micrograms/ml. Cefazolin (CEZ), cefotiam (CTM) and cefozopran (CZOP) were also active with the MIC90S of 4 micrograms/ml. Compared with antimicrobial activities of cephems is 1995, the MIC90S of them had changed into a better state. They ranged from 4 micrograms/ml 16 micrograms/ml in 1996. 4. Streptococcus agalactiae All drugs except MINO were active against S. agalactiae. ABPC, CZOP, IPM, and clarithromycin (CAM) showed the highest activities. The MICs for all strains were equal to or lower than 0.125 micromilligrams. Tosufloxacin (TFLX) and VCM were also active with the MIC90S of 0.5 micromilligrams. 5. Citrobacter freundii Gentamicin (GM) showed the highest activity against C. freundii isolated from patients with UTIs. Its MIC90 was 0.5 micrograms/ml. IPM and amikacin (AMK) were also active with the MIC90S of 1 microgram/ml and 2 micrograms/ml, respectively. Cefpirome (CPR) and CZOP were also active with the MIC90S of 8 micrograms/ml. The MIC90S of the others were 16 micrograms/ml or above. 6. Enterobacter cloacae IPM showed the highest activity against E. cloacae. The MICs for all strains were equal to or lower than 0.5 microgram/ml. The MIC90S of ciprofloxacin (CPFX) and TFLX were 1 microgram/ml, the MIC90 of AMK was 2 micrograms/ml, the MIC90S of CZOP, GM and ofloxacin (OFLX) were 4 micrograms/ml. The MIC50S of cephems except CEZ, cefmetazole (CMZ) and cefaclor (CCL) had changed into a better state in 1996, compared with those in 1995. 7. Escherichia coli All drugs except penicillins and MINO were active against E. coli. Particularly CPR, CZOP and IPM showed the highest activities against E. coli. The MIC90S of them were 0.125 microgram/ml or below. Among E. coli strains, those with low susceptibilities to cephems except CEZ, cefoperazone (CPZ), latamoxef (LMOX) and CCL have increased in 1996, compared with those in 1995. 8. Klebsiella pneumoniae K. pneumoniae was susceptible to all drugs except penicillins, with the MIC90S of 2 micrograms/ml or below. CPR had the strongest activity, the MICs for all strains were equal to or lower than 0.25 microgram/ml. Flomoxef (FMOX), cefixime (CFIX), CZOP and carumonam (CRMN) were also active with the MIC90S of 0.125 microgram/ml or below. 9. Pseudomonas aeruginosa All drugs except quinolones were not so active against P. aeruginosa with the MIC90S were 32 micrograms/ml or above. Quinolones were more active in 1996 than 1995. The MIC90S of them were between 4 micrograms/ml and 8 micrograms/ml, and the MIC50S of them were between 1 microgram/ml and 2 micrograms/ml. 10. Serratia marcescens GM showed the highest activity against S. marcescens. Its MIC90 was 1 micro  相似文献   

12.
The antimicrobial activity of netilmicin, a new semisynthetic aminoglycosidic aminocyclitol, was determined against 123 recent gram-negative clinical isolates susceptible to gentamicin and 60 isolates resistant to either sisomicin, gentamicin, or tobramycin. The minimal inhibitory concentrations and minimal bactericidal concentrations of netilmicin, sisomicin, gentamicin, and tobramycin against Pseudomonas, Escherichia coli, Klebsiella, Enterobacter, Proteus mirabilis, and indole-positive Proteus were, in general, quite similar. Gentamicin was the most active against Serratia. A total of 54, 67, and 88% of gentamicin-resistant Pseudomonas, Serratia, and Klebsiella, respectively, were susceptible to netilmicin. Strains of indole-positive Proteus, Acinetobacter, Providencia, and E. coli resistant to gentamicin were likely to be resistant also to netilmicin.  相似文献   

13.
The in vitro activity of RP59500, a streptogramin antibiotic, against 146 clinical isolates of vancomycin-resistant gram-positive bacteria was examined. Five strains of the species Enterococcus casseliflavus and Enterococcus gallinarum, for which the MIC of vancomycin was 8 micrograms/ml, were also studied. Twenty-eight vancomycin-susceptible strains of Enterococcus faecalis and Enterococcus faecium were included for comparison. The drug was highly active against Leuconostoc spp., Lactobacillus spp., and Pediococcus spp. (MICs, < or = 2 micrograms/ml). RP59500 was more active against vancomycin-susceptible strains of E. faecium than E. faecalis (MICs for 90% of the strains [MIC90s], 1.0 versus 32 micrograms/ml). Vancomycin-resistant strains of E. faecalis were as resistant to RP59500 as vancomycin-susceptible strains (MIC90, 32 micrograms/ml), but some vancomycin-resistant E. faecium strains were relatively more resistant to the new agent (MIC90, 16; MIC range, 0.5 to 32 micrograms/ml) than were vancomycin-susceptible organisms of this species.  相似文献   

14.
The purpose of this study was to compare the effect, both in vitro and in vivo, of cefepime with those of four other cephalosporins, namely ceftriaxone, cefotaxime, cefuroxime and cephalothin, against penicillin-resistant pneumococci. One hundred pneumococcal strains, 31 penicillin-susceptible, 30 penicillin-intermediate-resistant and 39 penicillin-resistant pneumococci, were used in MIC studies. Time-kill experiments were carried out for four strains. In the mouse peritonitis model, the dose that gave protection to 50% of mice challenged with a lethal dose of pneumococci (ED50) was determined for three pneumococci and five cephalosporins. The MICs of all five cephalosporins and penicillin correlated significantly with each other. In vitro, the most potent cephalosporins against pneumococci were cefotaxime, ceftriaxone and cefepime, followed by cefuroxime and cephalothin. In time-kill experiments, carried out for four pneumococci, no differences were found in the killing effect of these five cephalosporins in relation to MICs. In the mouse peritonitis model, there was no significant correlation between log(MIC) and log(ED50) for the five cephalosporins against three pneumococci (Spearman's rho = 0.39, P = 0.16). However, if the values for cefepime against the three pneumococci were excluded, there was a significant correlation for the remaining four cephalosporins (Spearman's rho = 0.62, P = 0.04). For all three pneumococci, the ED50s of cefepime were lower than expected from the MICs. It was not possible to explain this beneficial difference in the effect of cefepime in terms of in-vitro bactericidal activities, serum protein binding or pharmacodynamic parameters.  相似文献   

15.
The in vitro effect of cefoxitin, cefamandole, cephalexin, and cephalothin was tested against 645 strains of bacteria recently isolated from clinical sources. Against gram-positive organisms cephalothin and cefamandole were the most effective, generally being three- to fourfold more active than cephalexin or cefoxitin. Enterococci were not inhibited by less than 25 mug of any of the antibiotics per ml. Against Enterobacteriaceae, cefoxitin and cefamandole were the most active. An exception was the Enterobacter strains, against which cefoxitin was the least effective. None of the Pseudomonas aeruginosa strains were susceptible to 100 mug of any of the cephalosporins per ml. Cefamandole was the most active agent against Neisseria meningitidis and Neisseria gonorrhoeae. It was also the most effective agent against Haemophilus influenzae, even when taking into account a threefold inoculum effect.  相似文献   

16.
Quinupristin/dalfopristin (RP59500) is a novel streptogramin and a semisynthetic derivative of pristinamycins IA and IIB. The following properties of RP59500 were investigated: (i) its in-vitro activity against 164 hospital isolates of Staphylococcus aureus, 101 of which were methicillin-resistant (MRSA); (ii) its killing effect against 24 MRSA and seven methicillin-susceptible (MSSA) isolates; (iii) its interactions with rifampicin and ciprofloxacin against 18 MRSA isolates, six susceptible to both rifampicin and ciprofloxacin and 12 resistant to both, at 1 x MIC, 2 x MIC and 4 x MIC. Rifampicin and ciprofloxacin were applied at a concentration equal to their mean serum levels in order to establish the clinical relevance of the results. The MIC50, MIC90, MBC50 and MBC90 of quinupristin/dalfopristin were, respectively, < or = 0.015, 2, 0.12 and 2 mg/L for MRSA isolates and < or = 0.015, 0.06, < or = 0.015 and 0.25 mg/L for MSSA isolates. All isolates were inhibited by quinupristin/dalfopristin. Its killing effect varied with concentration and time, being optimal at 4 x MIC and after 24 h growth. Strains surviving 24 h exposure to this agent had much higher MICs than the parent strain, but only a limited number of them became resistant. Quinupristin/dalfopristin at 2 x MIC and 4 x MIC showed in-vitro synergy with rifampicin against highly resistant isolates mainly at 6 h and 24 h of growth involving 50-83% of MRSA isolates, and showed synergy with ciprofloxacin at 24 h involving 42-75% of isolates. The MIC increase in colonies surviving at 24 h was restricted by the presence of rifampicin or ciprofloxacin. In contrast, the above combinations acted synergically over the total number of MRSA strains susceptible to both rifampicin and ciprofloxacin. The above findings show that quinupristin/dalfopristin is a very potent antistaphylococcal agent, and that its activity against MRSA isolates is enhanced when it is combined with rifampicin or ciprofloxacin.  相似文献   

17.
The antibacterial activities of nitazoxanide and its main metabolite, tizoxanide, were tested against a broad range of bacteria, including anaerobes. Metronidazole, amoxicillin, amoxicillin-clavulanic acid, piperacillin, cefoxitin, imipenem, and clindamycin were used as positive controls. MICs were determined by reference agar dilution methods. The 241 anaerobes were all inhibited by nitazoxanide, with the MICs at which 90% of isolates are inhibited (MIC90S) being between 0.06 and 4 mg/liter with the exception of those for Propionibacterium species, for which the MIC90 was 16 mg/liter. The MIC90s of nitazoxanide were 0.5 mg/liter for the Bacteroides fragilis group (80 strains), 0.06 mg/liter for Clostridium difficile (21 strains), and 0.5 mg/liter for Clostridium perfringens (16 strains). Metronidazole showed a level of activity comparable to that of nitazoxanide except against Bifidobacterium species, against which it was poorly active, and Propionibacterium species, which were resistant to metronidazole. The other antibiotics showed various levels of activity against anaerobes, with imipenem along with nitazoxanide being the most active agents tested. Tizoxanide was less effective than nitazoxanide except against the B. fragilis group, against which its activity was similar to that of nitazoxanide. Under aerobic conditions, nitazoxanide demonstrated poor activity against members of the family Enterobacteriacae and Pseudomonas, Staphylococcus, and Enterococcus species. The same results were obtained when culture was performed under anaerobic conditions with the notable exception of the results against Staphylococcus aureus. The MICs of nitazoxanide were in the range of 2 to 4 mg/liter for 34 clinical isolates of S. aureus, 12 of which were methicillin resistant, while tizoxanide was not effective.  相似文献   

18.
The in vitro activity of biapenem was compared to that of imipenem, meropenem and other broad-spectrum beta-lactams. A total of 716 isolates from recent cases of clinical septicemia and an additional 137 stock strains possessing known beta-lactamases or other well-characterized resistance mechanisms were tested. The minimal concentrations inhibiting 90% of strains (MIC90) of Enterobacteriaceae species were for biapenem 0.03 to 1 mg/l and for imipenem 0.25 to 2 mg/l. No member of the Enterobacteriaceae was found to be resistant to biapenem. Biapenem and meropenem were the most active drugs against Pseudomonas aeruginosa, with an MIC90 of 1 mg/l. Biapenem was more active than ceftazidime against most gram-negative and gram-positive bacteria tested. Biapenem was as potent as imipenem against anaerobic bacteria (including Bacteroides fragilis), with an MIC90 of 0.25 mg/l. High MICs of biapenem were demonstrated for Xanthomonas maltophilia, oxacillin-resistant Staphylococcus spp. and Enterococcus spp. These species have demonstrated resistance to other carbapenems and to most of the newer cephalosporins. The results of this study, coupled with previously documented favorable qualities of biapenem, endorse further investigation of this broad-spectrum antibacterial agent for clinical use.  相似文献   

19.
In order to evaluate the annual changes of susceptibility, minimum inhibitory concentrations (MICs) of ofloxacin (OFLX) and 4 control drugs were determined against clinical isolates that were obtained from patients with otitis media and otitis externa during the periods between January and December 1993, and the periods between October 1996 and March 1997. The results are summarized as follows: 1. No annual changes were seen for MIC50 of OFLX, but MIC80 and MIC90 of that rose against methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci (CNS) and Pseudomonas aeruginosa from 1993 to 1996. It appears that resistance to OFLX is increasing among these bacteria. Detection frequency of highly resistant strains to OFLX (MIC > 100 micrograms/ml) was lower than to other control drugs. 2. No annual changes were seen of MIC50, MIC80 and MIC90 of OFLX against methicillin-susceptible S. aureus (MSSA), Streptococcus spp., Proteus spp. and Haemophilus influenzae. OFLX showed strong antimicrobial activities against these bacteria. 3. Since there was no large annual changes in the antimicrobial activity of OFLX against clinical isolates that were obtained from patients with otitis media and otitis externa, OFLX otic solution was considered as one of the clinically useful drugs even now.  相似文献   

20.
The in vitro minimal inhibitory concentrations (MIC) and minimal bactericidal concentration (MBC) of roxithromycin and erythromycin against Actinobacillus actinomycetemcomitans were evaluated. Sixty-seven different A. actinomycetemcomitans isolated from periodontal pockets of 101 subjects with different forms of early-onset and adult periodontitis and three reference strains of A. actinomycetemcomitans (ATCC 29522, ATCC 29523, and NCTC 9710) were included in this study. Erythromycin showed poor in vitro activity against A. actinomycetemcomitans; roxithromycin, on the contrary, exhibited good in vitro activity. Moreover, roxithromycin showed the best in vitro antimicrobial activity against 17 serotype a and 12 serotype c subpopulations of A. actinomycetemcomitans; against 38 serotype b subpopulation of A. actinomycetemcomitans, roxithromycin was consistently active. Roxithromycin exhibited MBC values usually equal to, or one-fold higher than MIC values. All the MBC values of erythromycin were three- to four-fold higher than the respective MIC result. Since roxithromycin is characterized by high concentrations in serum and good penetration and diffusion into gingival tissue, it could be expected to pass into the gingival crevicular fluid at levels sufficiently high to inhibit A. actinomycetemcomitans in vivo. These data indicate that roxithromycin might be a potential candidate for therapeutic trials in patients with A. actinomycetemcomitans-associated periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号