首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
受树叶平行叶脉启发,在多胞管(multicell tube, MT)外侧柱壳的内表面引入次级肋板构建新型仿生多胞管(bionic multicell tube, BMT),通过诱导改善薄壁结构变形模式提高能量吸收特性。通过3D打印技术制备试样开展准静态压缩试验,结合数值模拟研究了管壁厚度、冲击速度、次级肋板形态等因素对结构变形和能量吸收的影响,结果表明:1)采用倾斜次级肋板增强的BMT结构的平均压溃力和比吸能相比于MT提高约31%~59%和20%~35.2%;次级肋板的引入可诱导薄壁结构在±45°方向交错产生长度较长的塑性铰,薄壁结构弯曲变形能的提升是结构吸能特性增强的主要因素。2)BMT的次级肋板宽度小于1 mm时无法对外侧圆柱壳进行变形诱导,在10~70 m/s加载速度范围内BMT能量吸收特性随着冲击速度增大而增大。3)次级肋板的引入对MT中主级肋板和内侧圆管的能量吸收影响较小,但能够显著提高外侧圆管的吸能水平并降低其变形模式对加载速率的依赖性。  相似文献   

2.
抗冲击地砖具有超弹性大孔隙率蜂窝薄壁结构。建立抗冲击地砖的周期性薄壁结构单胞模型,进行冲击响应分析。结果表明,抗冲击地砖在压缩过程中具有明显的应变平台期,能够在一定载荷范围内提供足够的支撑刚度;在载荷强度达到一定值时,该结构能够被迅速压溃,产生瞬态大变形而吸收冲击能量。因此,抗冲击地砖是一种理想的舰员冲击防护手段。  相似文献   

3.
三角形蜂窝在面内冲击荷载下的力学性能   总被引:4,自引:2,他引:2       下载免费PDF全文
摘要:通过数值计算研究规则排布和交错排布的三角形铝蜂窝在面内冲击荷载下的变形模式、承载能力以及能量吸收特性。结果表明两种蜂窝的变形均随着冲击速度的增加或胞壁厚度的减小而向冲击端集中,规则排布的蜂窝沿着局部变形带逐行压溃直至密实,而交错排布蜂窝的变形模式可分为4种。铝蜂窝吸收的能量绝大部分转化为变形所需的内能,动能所占比重较小。随着冲击速度的提高,两种排布方式的蜂窝均表现出更强的承载能力和能量吸收能力,但内能在总能量中的比重减小,动能比重增加。规则排布的蜂窝比交错排布的蜂窝具有更高的承载力和能量吸收能力,该差别主要是由于二者内能的不同所引起,且该差值在交错排布蜂窝“核区”形成后逐渐减小。  相似文献   

4.
李飞  张凯  温金鹏 《包装工程》2016,37(7):110-115
目的为了提高能量吸收效率,设置出一种合理的诱导结构,对吸能构件产生积极影响。方法薄壁圆管设计一种环向圆弧刻槽诱导结构,在不同长径比、径厚比和刻槽深度的条件下研究薄壁结构吸能特性。结果吸能量与圆管长径比和径厚比成反比,初始压溃载荷随刻槽深度增加而减小。结论在不同的条件下,刻槽结构能够有效降低初始载荷,并获得较为平稳的压溃载荷平台。  相似文献   

5.
利用显式动力有限元法数值研究了冲击载荷下星形节点周期性蜂窝结构的面内冲击动力学响应特性。在保证各胞元壁长不变的前提下,通过改变胞壁厚度、内凹箭头节点间夹角和韧带长度等微结构参数,首先建立了星形节点周期性蜂窝结构的有限元模型。在此基础上,讨论了冲击速度和微结构参数对星形蜂窝材料的宏/微观变形、密实应变和动态冲击强度的影响。结果表明,由于胞壁受膜力和弯矩的耦合作用,在中、低速冲击载荷下,试件表现出负泊松比材料在轴向压缩时的"颈缩"现象。基于能量效率法和一维冲击波理论,给出了星形蜂窝结构密实应变和动态平台应力的经验公式,以预测多胞材料的动态承载能力。该研究将为拉胀多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。  相似文献   

6.
建立了泡沫铝填充薄壁方管的有限元模型,利用试验对泡沫铝填充薄壁方管的有限元模型的准确性进行了验证。研究了诱导结构的类型和数量对泡沫铝填充薄壁方管的轴向压溃变形模式、初始峰值力、压溃力效率和能量吸收能力的影响,结果表明:设计诱导结构可以提高能量吸收能力、减小初始峰值力、增加压溃力效率,甚至可以改变压溃变形模式。沿薄壁方管的轴向方向合理地增加诱导结构的数量,可以进一步的减小初始峰值力、增加压溃力效率、提高结构的能量吸收能力。通过等级评价方法,确定沿薄壁方管的轴向方向设计4组诱导四角方孔可以使泡沫铝填充薄壁方管获得最佳的综合吸能特性。  相似文献   

7.
建立了计算多胞方管能量吸收特性的有限元模型,利用双胞管的轴向压溃变形试验验证有限元模型的准确性。利用建立的有限元模型,研究了在斜向加载下多胞方管结构的压溃特性,结果表明:在大角度的斜向加载下,多胞方管会发生全局弯曲,导致能量吸收能力的显著下降。提出了分层多胞方管结构,在斜向加载下分层多胞方管结构有较大的能量吸收能力和压溃力效率。此外,在大角度的斜向加载下,分层多胞方管可以避免发生全局弯曲。通过复杂比例评价方法,评价了传统方管、多胞方管和分层多胞方管的斜向综合碰撞性能,确定了分层多胞方管L5具有最优的斜向碰撞性能。  相似文献   

8.
张新春  刘颖  张建辉 《功能材料》2013,(15):2143-2147
利用显式动力有限元法对三角形蜂窝材料在面内冲击载荷下的动力响应和能量吸收特性进行了研究。具体讨论了相对密度、冲击速度以及冲击方向对蜂窝材料变形模式、平台应力和比能量吸收能力的影响。结果表明,除了胞元的微结构特征参数(例如壁长、壁厚以及扩张角等),蜂窝材料的动力响应特性还依赖于冲击速度和冲击方向。在相对密度和冲击速度不变的前提下,试件沿Y方向冲击时表现为更高的平台应力和更强的能量吸收能力。随着冲击速度的增加,惯性效应明显,蜂窝材料的平台应力和能量吸收能力对冲击方向更敏感。将为多胞材料动力学多目标优化设计提供新的设计思路。  相似文献   

9.
目的研究胞元缺失的分布位置和大小对六边形蜂窝结构共面缓冲性能的影响。方法利用有限元分析软件Ansys/LS-DYNA建立六边形蜂窝在共面动态压缩载荷作用下可靠的动力学计算模型,动态压缩的速度在100 m/s以下。由计算结果进一步分析得到缓冲性能各评价指标。胞元缺失在样品中的分布位置根据其对称性有6种情形,针对单元缺失居于样品中央的情形,研究缺失大小对性能的影响。结果中低速冲击时,胞元缺失降低了结构的密实化应变值;高速冲击时,胞元缺失会增加六边形蜂窝结构的密实化应变。随着壁厚的增加,缺失位置对动态峰应力的影响先增大后减小。与完整六边形蜂窝相比,胞元缺失使得单位质量能量吸收随着应变的增加呈先大于后小于完整蜂窝单位质量能量的变化趋势,且随着冲击速度的增加,这种变化趋势越明显。在低速冲击下对于任一缺失类型,随着胞元缺失数目的增加,单位质量能量吸收明显减弱。结论相较于胞元缺失的分布位置,胞元缺失尺寸对六边形蜂窝共面缓冲性能的影响更大。  相似文献   

10.
矿用防冲方形折纹薄壁构件吸能特性数值分析   总被引:1,自引:0,他引:1  
为有效防治煤矿冲击地压,或在一定程度上减小冲击地压事故造成的损失,提出了一种矿用防冲方形折纹薄壁构件,构件防冲体现在构件被压溃过程中吸收冲击能和压溃空间给煤岩提供了一定的能量释放空间。采用ABAQUS有限元软件模拟了不同壁厚、轴向堆积不同模块个数的构件的吸能特性,并与常规方形薄壁进行了对比分析。结果表明:1方形折纹薄壁构件与常规方形薄壁构件相比有较低的压溃峰值载荷,有较高的总吸能和比吸能,防冲性优势明显。2减小折纹薄壁构件的壁厚和减小模块长度来增加构件轴向模块个数均能有效降低压溃峰值载荷,但同时也降低了总吸能和比吸能。根据模拟结果,选定了矿用防冲方形折纹薄壁构件尺寸,并进行了实验研究,证明了模拟的准确性。防冲构件与现有支架相结合使用,可使现有支架成为顶梁防冲支架、底梁防冲支架、两帮防冲支架、防冲液压支柱等。  相似文献   

11.
锥形多胞薄壁管斜向冲击吸能特性仿真研究   总被引:3,自引:3,他引:0  
亓昌  董方亮  杨姝  王栋 《振动与冲击》2012,31(24):102-107
采用有限元仿真,以比能量吸收和冲击峰值力为评价指标,研究了一种轴对称锥形多胞薄壁方管在不同冲击角度下的失效模式和吸能特性,分析了包括长径比、壁厚和锥度在内的结构参数对其斜向冲击吸能特性的影响,并拟合出可用于斜向冲击下比能量吸收和冲击峰值力预测的解析公式。结果表明,锥形多胞薄壁管在斜向冲击下的吸能特性明显优于其他类似薄壁吸能结构;结构参数对其吸能特性影响明显;拟合得到的解析公式为此类结构优化设计提供了参考和依据,并有利于工程实际应用。  相似文献   

12.
组合蜂窝材料面内冲击性能的研究   总被引:1,自引:1,他引:0  
基于三角形和六边形蜂窝结构面内冲击性能的研究,该文探讨了面内冲击荷载作用下组合Kagome蜂窝结构的变形机制和能量吸收特性。首先,在保证蜂窝结构胞元厚度与边长尺寸比值不变的前提下,分析了不同形状胞元及其组合结构的动态冲击性能,给出了试件宏观及微观胞元结构的动态演化过程。在此基础上,探讨了冲击速度和相对密度一定情况下单位质量不同蜂窝结构的能量吸收特性。其结论将对蜂窝材料微拓扑结构的动力学优化设计提供指导。  相似文献   

13.
研究T700/3234复合材料薄壁圆管轴向压溃吸能特性受纤维铺层角度变化的影响规律。开展复合材料力学性能试验和薄壁圆管轴向准静态压溃试验。通过对比圆管轴向压溃峰值载荷及比吸能等指标的试验结果,验证建立的复合材料圆管有限元模型和分析方法。基于验证的有限元分析方法,探讨了复合材料纤维铺层角度的变化对薄壁圆管轴向压溃吸能特性的影响规律。结果表明,在准静态轴向压缩载荷下,随着纤维铺层角度的增大,比吸能先增大后减小;纤维角度为±45°时,初始峰值载荷最低,载荷效率最高,圆管易于进入渐进破坏吸能阶段。研究结果可为复合材料纤维铺层角度设计及复合材料薄壁结构有限元建模提供参考。  相似文献   

14.
点阵夹芯结构因其优异的力学性能、出色的能量吸收能力、独特的功能性,被广泛应用于航空航天、汽车、船舶等领域。然而,传统点阵夹芯结构在面外压缩载荷下存在应力分布不均匀、节点应力集中等缺点。为了解决上述问题,该研究基于体心立方结构(body-centered cubic,BCC)提出了一种新型的余弦函数单元基(cosine function cell-base,CFCB)点阵结构。为了研究CFCB点阵夹芯结构面外压缩载荷下能量吸收特性,制备了CFCB点阵夹芯结构,开展了准静态压溃试验,并与BCC点阵夹芯结构的试验结果进行对比。结果表明,CFCB点阵夹芯结构面外压缩载荷下的承载与能量吸收能力明显优于BCC点阵夹芯结构。随后,基于有限元模型,系统揭示了芯子单胞直径、幅值、周期长度等胞元参数及厚度方向上的单胞层数对CFCB点阵夹芯结构面外压缩载荷下吸能特性的影响。相关研究成果有望为新型CFCB点阵夹芯结构设计提供参考。  相似文献   

15.
蜂窝纸板动态缓冲特性的试验研究   总被引:3,自引:2,他引:3  
基于跌落冲击试验,分析了3种不同的蜂窝纸板在0.3,0.6,0.9m高度下的动态冲击曲线,并建立了其能量吸收图。试验结果表明:随着厚跨比的增大,蜂窝纸板的最佳能量吸收点向右上方偏移,其单位体积吸收能量的能力增强;当完全压溃后,蜂窝纸板的最佳能量吸收点不随冲击高度的变化而改变。  相似文献   

16.
目的 为了研究静动态加载下泡沫铝填充薄壁金属管结构吸能特性随泡沫铝密度的变化规律。方法利用材料试验机对3种不同密度的泡沫铝填充薄壁金属管结构进行准静态压缩,利用Taylor–Hopkinson实验装置对相同结构进行动态压缩实验,基于电测和光测法获得结构的静动态压缩载荷位移曲线,对载荷位移曲线进行积分得到结构的静动态吸能特性。结果 准静态压缩下,随着泡沫铝密度的增加,泡沫铝填充薄壁管结构能量吸收能力近似成指数增加。动态压缩下,结构能量吸收能力随泡沫铝密度增加先保持不变后增加。结论 准静态压缩下,在薄壁金属管中添加泡沫铝能明显增加泡沫铝填充薄壁金属管结构能量吸收能力,但在动态压缩下,低密度泡沫铝的添加无益于增加结构的能量吸收能力,为增加薄壁金属管的吸能能力需要求泡沫铝的密度超过一定值。  相似文献   

17.
构造内六角蜂窝胞元构成的负泊松比超材料,将其作为双层板间的连接结构,基于有限元法和边界元法,对含负泊松比超材料肋板的双层板结构开展了声振分析。分析了内六角蜂窝负泊松比胞元几何特征与力学性能,设计含负泊松比肋板的双层板对其振动进行求解,并分析了胞元填充阻尼对振动的影响,结果表明双层板下面板响应相比上面板有明显衰减。控制结构总质量不变,通过调整负泊松比肋板的宽度与厚度,实现胞元等效模量的变化,进而改变肋板刚度,进行振动和辐射噪声计算。结果表明:与平板连接的双层板相比,含负泊松比肋板的双层板对振动能量有良好的吸收和衰减功能,能更好地降低面板的振动响应与辐射噪声;负泊松比肋板的板厚越小,层间结构的等效模量越低,振动与辐射声功率也越低。  相似文献   

18.
目的研究VRB与等厚板成形件在吸能特性和抗弯性方面的差异。方法通过准静态压溃、动态压溃及三点弯曲试验,获得并对比分析VRB变厚板的帽型梁典型结构件性能。结果变厚帽型梁的特殊结构在进行压溃变形时能起到诱导槽的作用;VRB帽型梁相比同质量的等厚板帽型梁,降低了峰值力,且吸能效果更优;随着帽型梁厚度(质量)的增加,冲击速度的提高,峰值力升高,吸收的能量增大;变厚板帽型梁的过渡区位置、过渡区长度、厚度分布等结构参数对抗弯承载性能有较大的影响。结论变厚板与等质量的等厚板成形件相比,有更好的结构性能特性。  相似文献   

19.
为了降低最大峰值应力和维持良好的冲击载荷一致性,在内凹六边形蜂窝(CHH)的基础上,基于机械超材料的设计理念,提出了一种新型负泊松比内凹环形蜂窝(RCH)结构模型。利用显式动力有限元方法,研究了面内冲击载荷作用下胞元微结构对该内凹环形蜂窝材料的变形行为、动态冲击应力和能量吸收特性的影响。研究结果表明:除了冲击速度和相对密度,内凹环形蜂窝结构的冲击动力学响应还依赖于胞元微结构;在中低速冲击作用下,内凹环形蜂窝亦表现出明显的负泊松比效应;与传统内凹六边形蜂窝不同,在相同冲击速度下,内凹环形蜂窝的最大峰值应力明显降低,并且具有良好的冲击载荷一致性;基于一维冲击波理论,还给出了内凹环形蜂窝材料的动态平台应力经验公式,理论计算结果和有限元结果吻合较好。  相似文献   

20.
一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析   总被引:1,自引:0,他引:1  
研究了一种全参数化的正弦曲线蜂窝结构,通过Pro/Engineer构建了其参数化模型,采用ABAQUS建立了正弦曲线蜂窝结构的有限元模型。研究了不同振幅、不同胞壁厚度的正弦曲线蜂窝结构在不同冲击速度下的面内动力学响应。研究表明,正弦曲线蜂窝结构的反作用力波动情况与其振幅以及冲击速度直接相关。振幅越小、蜂窝结构胞壁越厚,其反作用力波动越明显。速度越高,蜂窝结构的反作用力波动越明显。而振幅较大的正弦曲线蜂窝结构,在不同的速度下,其反作用力表现出了较好的稳定性。正弦曲线蜂窝结构固定端的平台应力主要与其厚度有直接关系,与冲击速度无关。通过对正弦曲线蜂窝结构的能量吸收情况分析表明,随着振幅的增加,其能量吸收能力相对下降,随着速度的提高,蜂窝结构能量吸收能力趋向于一致。结果表明,正弦曲线蜂窝结构的轻微拉胀效应可增强其平面内能量吸收能力,相对普通的常规正六边形蜂窝结构,具有更好的能量吸收效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号