首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Local feedback mode is introduced as a novel operation mode of scanning electrochemical microscopy (SECM) for electrochemical characterization of a single one-dimensional (1D) nanostructure, for example, a wire, rod, band, and tube with 1-100-nm width and micrometer to centimeter length. To demonstrate the principle, SECM feedback effects under diffusion limitation were studied theoretically and experimentally with a disk probe brought near a semi-infinitely long band electrode as a geometrical model for a conductive 1D nanostructure. As the band becomes narrower than the disk diameter, the feedback mechanism for tip current enhancement is predicted to change from standard positive feedback mode, to positive local feedback mode, and then to negative local feedback mode. The negative local feedback effect is the only feedback effect that allows observation of a 1D nanostructure without serious limitations due to small lateral dimension, available tip size, or finite electron-transfer rate. In line-scan and approach-curve experiments, an unbiased Pt band electrode with 100-nm width and 2.6-cm length was detectable in negative local feedback mode, even using a 25-microm-diameter disk Pt electrode. Using a 2-microm-diameter probe, both well-defined and defected sites were observed in SECM imaging on the basis of local electrochemical activity of the nanoband electrode. Noncontact and spatially resolved measurement is an advantage of this novel SECM approach over standard electrochemical approaches using electrodes based on 1D nanostructure.  相似文献   

2.
A new generation of platinum nanoelectrodes for constant-distance mode scanning electrochemical microscopy (CD-SECM) has been prepared, characterized, and used for high spatial resolution electrochemical measurements and visualization of electrochemically induced concentration gradients in microcavities. The probes have long (1-2 cm), narrow quartz tips that were conically polished and have a Pt nanoelectrode that is slightly offset from center. Because of the size and location of the electrode on the probe, it does not exhibit SECM feedback while approaching the analyzed sample surfaces even to distances within a few hundred nanometers. The probe was positioned near the surface while scanning and performing electrochemical measurements through use of nonoptical shear force control of the tip-to-sample distance. Test structures consisted of cylindrically shaped microcavities that are 50 microm in diameter with three individually addressable electrodes: a gold disk at 8-microm depth, a crescent-shaped gold ring at 4-microm depth along the wall, and a top gold electrode at the rim. Different electrodes within the microcavity were used to reduce and oxidize redox species in 250 microL of a solution of 5 mM hexaamineruthenium(III) chloride and 0.1 M potassium chloride, protected from evaporation by mineral oil, while the SECM tip followed the topography of the structures and monitored the current from the oxidation of [Ru(NH3)6]2+. Electrochemically generated concentration profiles were obtained from these complex test structures that are not possible with any other SECM technology at this time.  相似文献   

3.
The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.  相似文献   

4.
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.  相似文献   

5.
Lee Y  Ding Z  Bard AJ 《Analytical chemistry》2002,74(15):3634-3643
A technique that combines scanning electrochemical microscopy (SECM) and scanning optical microscopy (OM) was developed. Simultaneous scanning electrochemical/optical microscopy (SECM/OM) was performed by a special probe tip, which consists of an optical fiber core for light passage, surrounded by a gold ring electrode, and an outermost electrophoretic insulating sheath, with the tip attached to a tuning fork. To regulate the tip-substrate distance, either the shear force or the SECM tip current was employed as the feedback signal. The application of a quartz crystal tuning fork (32.768 kHz) for sensing shear force allowed simultaneous topographic, along with SECM and optical imaging in a constant-force mode. The capability of this technique was confirmed by obtaining simultaneously, for the first time, topographic, electrochemical, and optical images of an interdigitated array electrode. Current feedback from SECM also provided simultaneous electrochemical and optical images of relatively soft samples, such as a polycarbonate membrane filter and living diatoms in a constant-current mode. This mode should be useful in mapping the biochemical activity of a living cell.  相似文献   

6.
The fabrication and characterization of novel micropipet probes for use in scanning electrochemical microscopy (SECM) are described. These can be used to dispense small (pL) amounts of a solution while monitoring the electrochemical response at a substrate and at a ring electrode tip on the micropipet probe. The probes were constructed by insulating gold-coated borosilicate micropipets with electrophoretic paint and exposing a ring electrode at the tip by heat treatment. Characterization of the probes was performed using scanning electron microscopy, cyclic voltammetry, and SECM approach curve experiments. Routine construction of tips with diameters of the order of 3 microm was possible using this technique. The probes exhibited stable steady-state currents and positive and negative feedback approach curves that agreed with those predicted by theory. Demonstrative SECM imaging experiments were performed using a picodispenser to continuously dispense an electroactive solution (ferrocenemethanol) to the SECM cell while the probe was located within a few micrometers of a Pt substrate surface. Oxidation of the dispensed electroactive solution was performed at the substrate, and feedback currents were measured at the probe tip by holding the gold ring at a reducing potential. This mode of tip-dispensing SECM was used to obtain images of a platinum substrate electrode while monitoring both the substrate current and the feedback current at the probe.  相似文献   

7.
A scanning electrochemical microscopy (SECM) methodology for localized quantitative kinetic studies of electrode reactions based on the tip generation-substrate collection (TG-SC) operation mode is presented. This approach does not use the mediator feedback required in typical kinetic SECM experiments. The reactant is galvanostatically electrogenerated on a tip placed in proximity to the substrate. It diffuses through the tip-substrate gap and undergoes the reaction of interest on the substrate surface. The substrate current is monitored with time until it reaches an apparent steady-state value. The process was digitally simulated using an explicit finite difference method, for an irreversible first-order electrode reaction at the substrate. Transient responses, steady-state polarization curves, and TG-SC approach curves can be used to obtain substrate kinetics. The effects of the experimental parameters were analyzed. The possibility of easily changing the experimental conditions with the SECM is an attractive approach to obtain independent evidence that can be used for a strict test of reaction mechanisms. The technique was applied for a preliminary simplified kinetic examination of the oxygen reduction reaction in phosphoric acid.  相似文献   

8.
Undifferentiated and differentiated PC12 cells were imaged with the constant-distance mode of scanning electrochemical microscopy (SECM) using carbon ring and carbon fiber tips. Two types of feedback signals were used for distance control: the electrolysis current of a mediator (constant-current mode) and the impedance measured by the SECM tip (constant-impedance mode). The highest resolution was achieved using carbon ring electrodes with the constant-current mode. However, the constant-impedance mode has the important advantages that topography and faradaic current can be measured simultaneously, and because no mediator is required, the imaging can take place directly in the cell growth media. It was found that vesicular release events do not measurably alter the impedance, but the depolarizing solution, 105 mM K+, produces a dramatic impedance change such that constant-distance imaging cannot be performed during application of the stimulus. However, by operating the tip in the constant-height mode, cell morphology (via a change in impedance) and vesicular release could be detected simultaneously while moving the tip across the cell. This work represents a significant improvement over previous SECM imaging of model neurons, and it demonstrates that the combination of amperometry and constant-impedance SECM has the potential to be a powerful tool for investigating the spatial distribution of neurotransmitter release in vitro.  相似文献   

9.
Zoski CG  Liu B  Bard AJ 《Analytical chemistry》2004,76(13):3646-3654
Finite conical electrodes, which are of particular interest as probes for imaging of surfaces using scanning electrochemical microscopy (SECM), in kinetic studies and in probing thin films were investigated. Theoretical SECM tip current-distance feedback (approach) curves for a finite conical electrode were calculated by numerical (finite element) analysis and compared to an earlier approximate model. The SECM curves obtained depended on the ratio of the base radius of the cone to the height of the cone and on the thickness of the insulating sheath. A new approach to fabricating conical tips of Pt in glass is described. These were used to obtain approach curves over both electrically conducting and insulating substrates. Comparison of experimental and simulated SECM approach curves provided a sensitive method of evaluating the size and shape of finite conical electrodes.  相似文献   

10.
We describe a wet process for the fabrication of poly(tetrafluoroethylene) (PTFE)-covered electrodes in which arrays of holes ( approximately 200 microm) are formed. The PTFE coating provides electrical insulation of most of the electrode surface with selected regions exposed for electrochemical experiments. The arrays of microholes can be controllably patterned and filled with precursor solutions using a piezoelectric dispenser. A micrometer spot of electrocatalyst is produced after reduction of the precursor. The application is tested for scanning electrochemical microscopy (SECM) in the tip generation-substrate collection (TG-SC) studies of electrocatalysts. The method is shown to reduce the substrate background currents that are included in the electrochemical signal read from the local perturbation induced with the SECM tip to the substrate in the TG-SC mode of SECM. This background current reduction is consistent with the decrease in the exposed area of the electrode. The general methodology for the fabrication of the substrate electrodes and two proof-of-concept applications in the TG-SC SECM modality are described.  相似文献   

11.
Scanning electrochemical microscopy (SECM) has been employed in the feedback mode to assess the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes (SWNTs). It is shown that, even though the network comprises both metallic and semiconducting SWNTs, at high density (well above the percolation threshold for metallic SWNTs) and with approximately millimolar concentrations of redox species the network behaves as a thin metallic film, irrespective of the formal potential of the redox couple. This result is particularly striking since the fractional surface coverage of SWNTs is only approximately 1% and SECM delivers high mass transport rates to the network. Finite element simulations demonstrate that under these conditions diffusional overlap between neighboring SWNTs is significant so that planar diffusion prevails in the gap between the SECM tip and the underlying SWNT substrate. The SECM feedback response diminishes at higher concentrations of the redox species. However, wet gate measurements show that at the solution potentials of interest the conductivity is sufficiently high that lateral conductivity is not expected to be limiting. This suggests that reaction kinetics may be a limiting factor, especially since the low surface coverage of the SWNT network results in large fluxes to the SWNTs, which are characterized by a low density of electronic states. For electroanalytical purposes, significantly, two-dimensional SWNT networks can be considered as metallic films for typical millimolar concentrations employed in amperometry and voltammetry. Moreover, SWNT networks can be inexpensively and easily formed over large scales, opening up the possibility of further electroanalytical applications.  相似文献   

12.
Lee Y  Bard AJ 《Analytical chemistry》2002,74(15):3626-3633
A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.  相似文献   

13.
Living PC12 cells, a model cell type for studying neuronal function, were imaged using the negative feedback mode of a scanning electrochemical microscope (SECM). Six biocompatible redox mediators were successfully identified from a large pool of candidates and were then used for imaging PC12 cells before and after exposure to nerve growth factor (NGF). When exposed to NGF, cells differentiate into a neuron phenotype by growing narrow neurites (1-2 microm wide) that can extend > 100 microm from the cell proper. We demonstrate that carbon fiber electrodes with reduced tip diameters can be used for imaging both the cell proper and these neurites. Regions of decreased current, possibly resulting from raised features not identifiable by light microscopy, are clearly evident in the SECM images. Changes in the morphology of undifferentiated PC12 cells could be detected in real time with the SECM. After exposure to hypotonic and hypertonic solutions, reversible changes in cell height of <2 microm were measured.  相似文献   

14.
Scanning electrochemical microscopy (SECM) has been used to study the oxidation of iodide at Ta electrodes covered by a thin (~2.5 nm) film of Ta(2)O(5). SECM images of surface activity reveal that the voltammetric response of a macroscopic Ta electrode comprises the individual responses of a large number of microscopic sites, each with its own unique electrochemical behavior. Oxide film growth and metal dissolution occur simultaneously with iodide oxidation, resulting in a complex voltammetric response. The component of the voltammetric current due to iodide oxidation can be separated from the total current by SECM analysis. The growth of nanometer-thick oxide films can also be studied using SECM by monitoring the rate at which iodide is oxidized at the electrode surface.  相似文献   

15.
Conducting polymers show attractive characteristics as electrode materials for micro-electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer-based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.  相似文献   

16.
A linear array of eight individual addressable microelectrodes has been developed in order to perform high-throughput scanning electrochemical microscopy (SECM) imaging of large sample areas in contact regime. Similar to previous reports, the soft microelectrode array was fabricated by ablating microchannels on a polyethylene terephthalate (PET) film and filling them with carbon ink. Improvements have been achieved by using a 5 μm thick Parylene coating that allows for smaller working distances, as the probe was mounted with the Parylene coating facing the sample surface. Additionally, the application of a SECM holder allows scanning in contact regime with a tilted probe, reducing the topographic effects and assuring the probe bending direction. The main advantage of the soft microelectrode array is the considerable decrease in the experimental time needed for imaging large sample areas. Additionally, soft microelectrode arrays are very stable and can be used several times, since the electrode surface can be regenerated by blade cutting. Cyclic voltammograms and approach curves were recorded in order to assess the electrochemical properties of the device. An SECM image of a gold on glass chip was obtained with high resolution and sensitivity, proving the feasibility of soft microelectrode arrays to detect localized surface activity. Finite element method (FEM) simulations were performed in order to establish the effect of diffusion layer overlapping between neighboring electrodes on the respective approach curves.  相似文献   

17.
An approximate theory for the feedback mode of the scanning electrochemical microscope (SECM) is developed to interpret the effects of substrate shielding on an ultramicroelectrode tip during a recording of iT versus d curves (approach curves) for reversible and quasireversible kinetics at a substrate surface. The resulting expressions for the tip current, iT, show a good fit to more accurate SECM simulations as well as to the experimental response of a reversible and quasireversible reaction. SECM shielding experiments thus give an interesting new insight into SECM approach curves over electrodes at different potentials, which suggest possible applications to measuring heterogeneous kinetics for fast reactions and diffusion coefficient determination.  相似文献   

18.
Positionable voltammetric cells with tip diameters of < 50 microm were constructed from theta glass capillaries. One channel of the pulled glass capillary contains a carbon fiber microelectrode sealed in epoxy while the other houses a Ag/AgCl reference electrode that makes electrical contact to the analyte solution via a salt bridge at the tip. The device can be operated as a two-electrode cell and can therefore make measurements in droplets of solution that are similar in size to the tip. Alternatively, if the droplet of solution is larger than the tip, spatially resolved measurements of a substrate in solution can be made. Voltammetric experiments and feedback imaging with the scanning electrochemical microscope (SECM) were accomplished in microdroplets with solution volumes of less than 1 nL. pH images of a substrate immersed in 70-microL-thick films of solution were obtained in the generator-collector mode of SECM using an iridium oxide-modified microcell. This type of microcell is particularly useful for making electrochemical measurements in very small droplets of solution where a mobile working electrode could easily collide with a separately positioned reference electrode.  相似文献   

19.
LeSuer RJ  Fan FR  Bard AJ 《Analytical chemistry》2004,76(23):6894-6901
The bipolar conductance, BICON, technique for the measurement of solution resistance, based on the application of microsecond current pulses, as originally described by Enke and co-workers for measurements with conventional electrodes, was extended for use with ultramicroelectrodes, with a focus on its application in scanning electrochemical microscopy (SECM). When the plateau time used to make the measurement lies within the BICON conditions, the solution conductance can be obtained directly from the output without the need for calibration curves. However, decreasing the size of the ultramicroelectrode decreases the range of values that satisfy these conditions, and one must resort to calibration curves to obtain solution conductance from the measured current, which was nevertheless found to be proportional to electrolyte concentration with electrodes as small as 5 mum in diameter. BICON/SECM approach curves over insulating substrates followed SECM negative feedback theory and approach curves in the presence of low (micromolar) or no added electrolyte are possible once the background conductivity is taken into account. Approach curves to a conducting substrate at open circuit potential are influenced by the solution time constant (solution resistance at the electrode tip x electrode double layer capacitance), which is a function of the tip/substrate distance, as well as the substrate size.  相似文献   

20.
The integration of a scanning Kelvin probe (SKP) and a scanning electrochemical microscope (SECM) into a single SKP-SECM setup, the concept of the proposed system, its technical realization, and first applications are presented and discussed in detail. A preloaded piezo actuator placed in a grounded stainless steel case was used as the driving mechanism for oscillation of a Pt disk electrode as conventionally used in SECM when the system was operated in the SKP mode. Thus, the same tip is recording the contact potential difference (CPD) during SKP scanning and is used as a working electrode for SECM imaging in the redox-competition mode (RC-SECM). The detection of the local CPD is established by amplification of the displacement current at an ultralow noise operational amplifier and its compensation by application of a variable backing potential (V(b)) in the external circuit. The control of the tip-to-sample distance is performed by applying an additional alternating voltage with a much lower frequency than the oscillation frequency of the Kelvin probe. The main advantage of the SKP-SECM system is that it allows constant distance measurements of the CPD in air under ambient conditions and in the redox-competition mode of the SECM in the electrolyte of choice over the same sample area without replacement of the sample or exchange of the working electrode. The performance of the system was evaluated using a test sample made by sputtering thin Pt and W films on an oxidized silicon wafer. The obtained values of the CPD correlate well with known data, and the electrochemical activity for oxygen reduction is as expected higher over Pt than W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号