共查询到20条相似文献,搜索用时 15 毫秒
1.
静电纺丝制备的纳米纤维孔隙率高、吸附能力强,可用于高效地处理化工行业油污染问题。聚乳酸(PLA)作为生物可降解材料,来源广泛且不会造成二次污染,具有广阔的应用前景。本文利用自制的熔体微分电纺装置,制备了PLA/乙酰基柠檬酸三丁酯(ATBC)纤维膜,探究了物料性质和增塑剂ATBC含量对PLA纤维形貌及吸油性能的影响,并获得了最佳的纺丝温度和ATBC含量。研究表明,在纺丝温度为240℃、ATBC质量分数为10%时制备的纤维直径为320nm。该纤维膜水接触角为145°,表现出良好的疏水性能,吸油倍率为138.4g/g,是市售PP无纺布吸油性能的4~5倍,保油倍率为85.8g/g。重复吸/放油5次循环后,纤维膜仍具有良好的强度而未发生断裂且可继续进行吸油,重复使用性能较好,可被应用于化工行业油污染处理。 相似文献
2.
以聚乳酸(PLA)和大豆分离蛋白(SPI)为原料,采用静电纺丝技术,制备了PLA/SPI复合纤维。采用FT-IR、SEM、XRD等分析手段对复合纤维进行表征。结果表明:PLA/SPI复合纤维中PLA和SPI通过氢键缔合,纤维直径分布在100~300nm之间。 相似文献
3.
《塑料》2017,(5)
为了获得手感更好的衣服材料以及减少无针刺法非织造布的工艺流程,采用单针头熔体电纺丝设备对热熔胶TPU进行纺丝,制备了TPU非织造布,通过改变PEG-10000的含量来调控纤维细度和纤维黏结点个数,并采用扫描电镜测算纤维平均直径以及纤维黏结点个数。实验结果表明:当PEG-10000的含量为0时,由于TPU的黏度过大无法纺丝,因而无法获得纤维。随着PEG-10000含量的增加,TPU的黏度逐渐降低,达到可纺的条件,并且可纺性越来越好。一定质量分数的PEG-10000对纤维的细化效果明显,当PEG-10000的含量为6%时,纤维直径最细,并且黏结点个数最多,此时纤维网的力学性能最好。 相似文献
4.
静电纺丝(电纺)技术是一种制备直径为数10 nm到数μm纳米纤维的有效方法,介绍了电纺的工作机理,对电纺条件影响纤维形态和纳米纤维应用进行了综述。最后对纳米纤维应用发展方向进行了展望。 相似文献
5.
6.
利用一对带有异种电荷的对称共轭喷丝头,通过静电纺丝法制备了几种聚合物的连续排列有序的微/纳米纤维,并与常规静电纺丝方法制备的纳米纤维进行了比较。结果发现:利用对称共轭电纺法制备的纤维的直径比常规电纺法制备的要大2~3倍,而且纤维具有良好的排列有序性;而用常规方法制备的纳米纤维则是无规排列的。扫描电子显微镜(SEM)被用来表征制备的微/纳米纤维和纳米纤维膜。 相似文献
7.
《化工进展》2017,(8)
活性碳纳米纤维由于比表面积大、导电、导热性好、孔隙率高等优点,得到人们广泛关注。如何进一步提高其比表面积、孔隙率,特别是微孔和介孔的含量,是活性碳纳米纤维面临的主要问题。电纺技术是一种简单、有效、可大量连续制备纳米纤维的方法。本文介绍了电纺制备纳米纤维前体,再通过预氧化、碳化和活化制备活性碳纳米纤维。详细分析了前体选择、孔结构调控对活性碳纳米纤维结构与性能的影响。前体主要决定活性碳纳米纤维产物的微观孔隙结构,孔隙结构调控主要包括间隙孔、大孔、介孔和微孔的调控。回顾了电纺活性碳纳米纤维在超级电容器电极、电吸附除盐电极、吸附过滤和催化剂及其催化剂载体等领域的应用。并提出今后可将催化剂与活性碳纳米纤维原位负载,在提高催化活性点方面进行更为深入的研究,以期获得更广泛的应用。 相似文献
8.
9.
10.
以PVP作为络合剂与Ti(C4H9O)4反应制得前驱体,采用静电纺丝法制得PVP/TiO2纳米复合纤维后在马弗炉中煅烧,并采用SEM、TG—DTA、XRD等对纳米纤维进行了表征。结果表明:适当增加Ti(C4H9O)4浓度、增加静电电压、减小喷射速度和升高煅烧温度,电纺丝纤维直径变细;PVP/TiO2复合纤维煅烧至550℃时得到的为纯TiO2;经400℃、600℃、700%、900%煅烧后分别得到开始出现锐钛矿型的TiO2、以锐钛矿型的TiO2为主、以金红石型的TiO2为主和完全金红石晶型的TiO2纳米纤维。 相似文献
11.
采用自制的熔体同轴静电纺丝装置,通过控制壳层聚丙烯(PP)与核层聚乳酸(PLA)+聚乙二醇(PEG)的流量大小,制备不同直径、不同结构和不同热焓的核壳结构纤维。研究结果表明,在总流量不变的情况下,核层PLA+PEG流量增加,获得的纤维直径增大,1 g/h时平均直径为2.4μm,5 g/h时为6μm;PLA+PEG与PP流量相差越大,纤维直径越不均匀,内外层结构也越不均匀;PLA+PEG流量增大,制备的纤维热焓增大。为获得直径均匀、结构均匀、热焓较大的核壳结构超细纤维,PLA+PEG与PP流量比值控制在1~2倍较佳。 相似文献
12.
亲水纤维膜具有毛细作用,水分可以在纤维中沿着不同方向进行输送,是一种理想的土壤保湿材料。采用熔体微分静电纺丝技术,在聚乳酸(PLA)中引入亲水剂十二烷基苯磺酸钠(SDBS)及增塑剂聚乙二醇(PEG),制备亲水性PLA/PEG/SDBS纤维膜,探究复合材料中SDBS含量对纤维微观形貌及纤维膜亲水性能的影响。结果表明,随着共混体系中SDBS含量的增加,平均纤维直径呈先增大后减小,纤维膜吸水倍率、平均输水速率及平均芯吸高度总体呈上升趋势。在纺丝电压为35 kV、纺丝距离8 cm的工艺参数下,当共混体系中SDBS含量为1.5%时,平均纤维直径为3.38μm、吸水倍率为19.37倍、平均输水速率为6 g/min、平均芯吸高度为10.23 cm。利用熔体微分电纺技术实现亲水性PLA/PEG/SDBS纤维膜的制备,无动力水输运性能的研究为其在土壤微灌、光热界面蒸发等领域中的应用提供了基础。 相似文献
13.
Pd纳米粒子负载的碳纳米纤维是催化Sonogahira偶合反应的良好催化剂,其高长径比使之易于从反应混合物中过滤分离;金属纳米粒子与碳纤维间的强相瓦作用使其具有良好的多次重复使用性.通过电纺丝技术和碳化技术制备了Pd金属纳米粒子负载的电纺碳纳米纤维,透射电镜观察显示最终碳化温度及在该温度下的停留时间是影响钯纳米粒子尺寸及其在纤维中分布的主要因素.并通过所得复合纳米纤维对Sonogahira偶合反应的催化活性研究,发现475~575℃这一温度范围是制备具有良好催化活性的金属钯纳米粒子负载的碳纳米纤维的最佳的碳化温度段. 相似文献
14.
本文介绍了电纺热塑性聚氨酯(TPU)制备中所涉及熔融电纺法和溶液电纺法的研究现状,并综述了电纺TPU在医用支架材料、伤口敷料、锂电池电解质、形状记忆材料、吸声材料、压阻敏感性材料方面的应用研究进展。 相似文献
15.
16.
17.
《化工进展》2017,(10)
活性碳纳米纤维由于比表面积大、导电、导热性好、孔隙率高等优点,得到人们广泛关注。如何进一步提高得碳率、比表面积和孔隙率,是制备活性碳纳米纤维面临的主要问题。以静电纺丝(电纺)纤维素纳米纤维为基体,在N_2气氛下分别采用ZnCl_2和NH_4Cl化学活化法制备活性碳纳米纤维(ACNF),采用热重、扫描电镜、透射电镜和N_2吸附-脱附等温线表征ACNF的形貌与性能。实验结果表明:电纺制备的纤维素前体直径为250nm±60nm,直接碳化纤维发生一定程度熔融黏结,破坏纤维形貌。采用ZnCl_2和NH_4Cl活化处理后,碳化温度降低,纤维不发生熔融黏结,得碳率从15.6%增加到33.2%~38.3%。活化处理后碳纤维平均孔径从1.10nm减小到0.7nm,BET比表面积从320.12m~2/g增加到450.35m~2/g。活化处理后,ACNF对亚甲基蓝的饱和吸附量从110.25mg/g增加到163.49mg/g,增加了48%。 相似文献
18.
静电纺PLA微/纳米纤维膜的浸润性能研究 总被引:1,自引:0,他引:1
采用静电纺丝技术制备聚乳酸(PLA)微/纳米纤维膜,研究了其可纺性、浸润性能及结构。结果表明:以二氯甲烷为溶剂的PLA电纺丝溶液,当PLA质量分数为7%时,可纺出纤维直径为280~690 nm的PLA微/纳米纤维膜。PLA微/纳米纤维膜与水的接触角为127.6°,高于PLA流延膜与水的接触角107.7°;红外光谱分析表明,PLA微/纳米纤维膜的分子组成没有发生变化;X光电子能谱测试表明PLA微/纳米纤维膜的表面碳氧含量比高于PLA流延膜,PLA微/纳米纤维膜的疏水性得到提高。 相似文献
19.