首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
采用注塑工艺,探讨了乙酰柠檬酸三丁酯(ATBC)、聚乙二醇1500(PEG1500)、甘油(GY)和聚乙二醇200(PEG200)四种增塑剂及ATBC含量对聚乳酸/竹纤维(PLA/BF)复合材料的力学性能、吸水性、热稳定性、相容性的影响。结果表明,四种增塑剂都能使复合材料PLA/BF的相容性有所改善,但作用不同,少量ATBC的添加有利于PLA/BF复合体系相容性的提高。PEG1500和GY的添加有利于复合材料热稳定性的增加,而PEG200和ATBC则相反。PEG1500使复合材料的吸水率改变最大。力学性能分析可知,PEG1500对复合材料的韧性作用最显著,但同时拉伸强度的下降幅度也是最大,综合各因素得出ATBC最适合做该PLA/BF复合材料的增韧改性剂。随着ATBC含量的增加PLA/BF复合材料的热稳定性下降,吸水率提高,拉伸强度下降,韧性提高。  相似文献   

2.
以聚乙二醇400(PEG400)为增塑剂,采用注塑成型的方法制备了聚乳酸/竹纤维(PLA/BF)复合材料,探讨了PEG400用量对PLA/BF复合材料增塑性能的影响。结果表明,PEG400的引入虽在一定程度上有利于PLA/BF复合材料两相相容性的提高,但会使复合材料的热稳定性下降、吸水性提高。力学性能测试表明,随着PEG400用量的增加,PLA/BF复合材料的拉伸强度逐渐下降,冲击强度则基本呈上升趋势,即PEG400对复合材料可起到一定的增韧作用。  相似文献   

3.
采用熔融共混法制备了具有均衡强度与韧性的聚乳酸(PLA)/聚碳酸亚丙酯(PPCU)生物降解复合材料。利用扫描电子显微镜、万能拉力试验机、平板旋转流变仪、热重分析仪等仪器,研究并分析了在低组分填充下,PPCU对PLA/PPCU复合材料力学性能、相容性及热稳定性的影响。研究表明,少量PPCU与PLA具有较好的相容性;当PPCU填充量为5%时,分散相达到临界粒径,复合材料发生了由脆性到韧性的转变,其断裂伸长率为428%,约为纯PLA的54倍,屈服强度仍然保持在56 MPa,随着PPCU含量的增加,复合材料的断裂伸长率升高,屈服强度逐渐降低;力学性能测试结果表明,在拉伸作用下,复合材料主要由基体变形吸收外界能量,在冲击作用下,主要由弹性体的变形以及弹性体和PLA界面破坏吸收外界能量。  相似文献   

4.
利用以拉伸形变为主导的叶片挤出机制备了不同质量比的聚乳酸/蒙脱土(PLA/MMT)纳米复合材料,通过透射电子显微镜(TEM)和X射线衍射仪(XRD)表征了该复合材料的微观结构及形貌,并探讨了不同含量的MMT对PLA/MMT复合材料的力学性能以及动态力学性能的影响。结果表明:PLA分子链插入MMT片层之间,形成了具有插层结构的PLA/MMT纳米复合材料;该复合材料的拉伸强度、拉伸模量及冲击强度均随着MMT含量的增加呈先增后减的趋势;当MMT含量为2.5%时,复合材料的综合力学性能达到最佳,其中拉伸模量比纯PLA提高了170%,冲击强度则提高了130%,说明少量MMT的加入对PLA能起到增强增韧的作用。另外,动态力学性能测试结果表明,随着MMT含量的增加,复合材料的玻璃化转变温度有下降的趋势。  相似文献   

5.
《塑料科技》2016,(10):71-74
将竹纤维(BF)与聚己内酯(PCL)、聚乳酸(PLA)熔融共混,通过模压工艺制备了PCL/PLA/BF增强复合材料。研究了BF质量分数对该复合材料力学性能、热稳定性以及熔融结晶行为的影响。结果表明:随着BF质量分数的增加,PCL/PLA/BF复合材料的冲击强度、拉伸强度和断裂伸长率均先增大后减小,并均在BF质量分数为40%时达到最大值,分别为11.26 k J/m2、12.68 MPa和5.2%;BF质量分数对PCL/PLA/BF复合材料的热稳定性无明显影响;BF的加入使得复合材料中PCL、PLA共混物的玻璃化转变温度降低,但不同BF质量分数的复合材料玻璃化转变温度变化不大;BF的加入使得复合材料结晶温度小幅提升,但结晶峰强度随着BF质量分数的增加而逐渐减弱。  相似文献   

6.
采用熔融共混法制备了聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)/聚乳酸(PBAT/PLA)共混复合材料,并对PBAT/PLA共混体系的流变性能、结晶性能、力学性能、微观形貌以及发泡行为(热膨胀微球作为发泡剂)进行了表征。结果表明:随着PLA含量的增加,PBAT/PLA共混体系的非牛顿指数先减小后增大,其中当PLA含量为30%时达到最小值;PLA的引入改善了PBAT的结晶性能,且PBAT与PLA对彼此的晶型均无影响;随PLA含量的增加,PBAT/PLA共混体系的拉伸强度增大、断裂伸长率降低,其中当PLA含量为50%时,拉伸强度和断裂伸长率分别达到25.3 MPa和422.2%;PLA与PBAT的相容性差,当PLA含量为30%时,PLA/PBAT共混体系发生相分离;此外,当PLA含量为10%时,PBAT/PLA复合发泡材料的密度达到最小值0.34 g/cm~3。  相似文献   

7.
在聚乳酸(PLA)中添加不同含量的聚己内酯(PCL)和滑石粉,同时添加增容剂柠檬酸三丁酯(TBC),通过熔融共混制备一系列PLA/PCL/滑石粉复合材料。主要研究了PCL、滑石粉以及TBC对PLA力学性能和结晶性能的影响。结果表明,PCL提高了PLA的韧性,但降低了强度,滑石粉主要起到了增强作用,但降低了PLA韧性,而将两者共同添加到PLA中可以起到一定的增强增韧作用,其异相成核作用也提高了PLA的结晶度。增容剂TBC的加入,改善了PLA和PCL的相容性,提高PCL的增韧效果以及复合材料的结晶度,但略微降低了PLA的拉伸强度。当PCL和滑石粉质量分数均为10%且加入0.5份的TBC后,PLA/PCL/滑石粉复合材料的断裂伸长率、拉伸强度、结晶度分别为13.3%,61.6 MPa,43.0%,相比纯PLA分别提高了533%,2%,73.4%。  相似文献   

8.
《塑料》2017,(5)
采用双螺杆挤出机制备了聚乳酸/己二酸-对苯二甲酸-丁二醇酯共聚物(PLA/PBAT)共混物和PLA/PBAT/纳米碳酸钙(PLA/PBAT/nano-CaCO_3)复合材料;通过差示扫描量热仪(DSC)、扫描电子显微镜(SEM)和微机电子万能试验机研究了PLA/PBAT共混物的微观结构、相容性、熔融与结晶行为及力学性能;不同含量的nano-CaCO_3对PLA/PBAT/nano-CaCO_3三元复合材料中PLA的熔融与结晶行为及复合材料力学性能的影响及nano-CaCO_3在PLA/PBAT共混物中的分布行为。DSC表明,与少量的PBAT共混后,PLA的结晶度提高;而加入nano-CaCO_3后,PLA的结晶温度降低;SEM表明,PLA与少量PBAT部分相容,且nano-CaCO_3选择性地分布在PBAT相中;力学性能测试表明,与PBAT共混后,PLA的韧性得到很大程度的改善,且nano-CaCO_3与PBAT起到了协同增韧的作用,冲击强度提高了162%;但nano-CaCO_3的加入量存在阈值,超过10%时,会使PLA/PBAT/nano-CaCO_3复合材料的拉伸强度下降。  相似文献   

9.
以聚己内酯(PCL)和聚乳酸(PLA)共混物为基材,竹纤维(BF)作为增强材料,硅烷偶联剂为改性剂,通过模压成型制备了PCL/PLA/BF复合材料。研究了PCL和PLA质量比、BF质量分数、硅烷偶联剂用量以及模压温度对复合材料性能影响。结果表明,适宜的PCL/PLA质量比为1∶1,BF质量分数为40 %时BF/PCL/PLA复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值11.26 kJ/m2,12.68 MPa和5.2 %;硅烷偶联剂用量为1 %时复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值15.11 kJ/m2、13.15 MPa和5.8 %;模压温度为150 ℃时,复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值14.51 kJ/m2、13.75 MPa和5.8 %。  相似文献   

10.
聚乳酸增韧改性研究   总被引:3,自引:1,他引:2  
采用熔融共混法,将聚乳酸(PLA)分别与丁二醇-己二酸-对苯二甲酸共聚物(PBAT)、聚丁二酸丁二醇酯(PBS)及聚甲基乙撑碳酸酯(PPC)共混制备生物降解复合材料,并模压成型。研究了3种复合材料的拉伸性能、冲击性能及断面微观形貌。结果表明:PBAT、PBS和PPC均能提高PLA的断裂伸长率和冲击强度;与PBS和PPC相比,PBAT与PLA的相容性更好;随着PBAT含量的增加,增韧PLA材料的冲击强度逐渐上升,但PBAT与PLA的相容性逐渐变差。  相似文献   

11.
针对聚乳酸(PLA)韧性差的特点,采用有机硅改性热塑性聚氨酯(TPSiU)对PLA通过熔融共混进行增韧改性,考察了TPSiU含量对PLA/TPSiU共混物微观结构、热性能及力学性能等的影响。研究结果表明,TPSiU的加入,使PLA由脆性材料转变为韧性材料,共混物的拉伸强度、弹性模量,冲击强度均随TPSiU含量的增加呈先增大后减小的趋势,当TPSiU的质量分数为20%时,PLA/TPSiU共混物的断裂伸长率提高约8倍。PLA/TPSiU共混物中两相呈海-岛结构,相容性欠佳,而且随着TPSiU含量的增加,"岛"相尺寸逐渐增大。另外,TPSiU的加入对PLA的热性能稍有影响,当TPSiU质量分数为10%时,共混体系的耐热性与纯PLA相当。  相似文献   

12.
通过熔融挤出法制备了纤维素纳米纤丝(CNFs)/聚乳酸(PLA)复合材料,考察了未改性、硅烷偶联剂(KH550)及表面活性剂(CTAB)改性CNFs对CNFs/PLA复合材料拉伸性能、流变行为及拉伸断面形貌的影响。结果表明:少量未改性CNFs与PLA有一定的相容性,但在CNFs含量较高时会导致力学性能下降;KH550改性CNFs可促进CNFs在PLA中的分散,当CNFs含量较高时具有增强效果;CTAB增容效果较差,使PLA的力学性能大幅下降。  相似文献   

13.
采用硅烷偶联剂对竹纤维进行表面改姓,通过热压成型工艺制备了竹纤维增强环氧树脂(EP)复合材料。研究了竹纤维(BF)的长度、竹纤维含量和CaCO3含量对竹纤维/环氧(BF/EP)复合材料力学性能的影响。结果表明,竹纤维增强环氧复合材料,拉伸和冲击强度得到明显改善;当竹纤维含量为20%时,BF/EP复合材料的力学性能最佳,拉伸和冲击强度分别达到37.64MPa、8.30MPa。  相似文献   

14.
《塑料》2016,(3)
用熔融共混法制备聚乳酸/对苯二甲酸-己二酸-1、4-丁二醇三元共聚酯(PLA/PBAT)复合材料,利用SEM和DSC对其结构和性能进行研究,结果表明:随着PBAT质量分数的增加,材料断面出现孔洞和凹槽,且孔洞尺寸逐渐变大,使PBAT和PLA的相容性变差,抑制了PLA的结晶,导致复合材料拉伸强度下降。但在一定程度下PBAT的柔性链段能改善PLA的脆性,当PBAT质量分数为30%时,冲击强度最大为5.33kJ/m~2。  相似文献   

15.
以聚乳酸(PLA)为基体,新型纤维素纤维Lyocell纤维为增强材料,通过熔融共混及注塑成型制备了PLA/Lyocell纤维可生物降解复合材料,并采用扫描电镜(SEM)、力学性能测试、差示扫描量热法(DSC)和维卡软化温度测试等手段,探讨了Lyocell纤维含量对复合材料结构和性能的影响。结果表明:随着Lyocell纤维含量的增加,PLA/Lyocell纤维复合材料的结晶度、弯曲模量和维卡软化温度均随之提高,而拉伸强度和冲击强度则呈现先上升后下降的趋势。其中当Lyocell纤维含量达到6%时,其在复合材料中的分布较为均匀,所对应复合材料的力学性能相对较好,其拉伸强度、缺口冲击强度和弯曲模量比纯PLA分别提高了15.3%、12.3%和13.0%。  相似文献   

16.
《塑料科技》2015,(10):73-76
采用熔融共混法,以聚(3-羟基丁酸-co-3-羟基戊酸酯)(PHBV)为增韧剂对聚乳酸(PLA)进行改性,得到PLA/PHBV复合材料。研究了PHBV用量对PLA/PHBV复合材料结晶性能和力学性能的影响。结果表明:随着PHBV用量的增加,PLA/PHBV复合材料的结晶度逐渐减小,拉伸强度和弯曲强度逐渐降低,而断裂伸长率则逐渐增大(当PHBV用量为50%时,复合材料的断裂伸长率比纯PLA提高了1.72倍),同时复合材料的冲击强度亦有所提高。由此可见,在不明显降低拉伸强度和弯曲强度的前提下,适量PHBV的添加能够改善PLA/PHBV复合材料的韧性。  相似文献   

17.
凹凸棒石/聚乳酸纳米复合材料的力学性能和流变性能   总被引:1,自引:0,他引:1  
采用熔融共混法制备凹凸棒石(ATT)质量分数分别为1%、3%和5%的ATT/聚乳酸(PLA)纳米复合材料,研究了ATT/PLA纳米复合材料的力学性能和流变性能。红外光谱分析结果表明:ATT与PLA基体之间存在较强的相互作用,使得二者之间具有较好的相容性。当ATT含量低于5%时,其可均匀分散在PLA基体中,而达到5%时,则会发生部分团聚。添加ATT后,PLA基体从脆性材料变为韧性材料,ATT起到增韧作用,并显著提高了复合材料的力学性能。当ATT含量为3%时,断裂伸长率达到26.36%,比纯PLA增加了297.6%,并且复合材料的冲击强度也比纯PLA增加了19.7%。ATT/PLA纳米复合材料的复数黏度、储能模量和损耗模量随ATT含量的增加呈先增大后减小趋势。由于ATT与PLA之间有良好的结合力,ATT的加入增大了复合材料的弹性和黏性,且低频区的变化明显高于高频区的变化。  相似文献   

18.
汤骞  王崇  戴文利 《塑料》2020,49(1):31-33,38
采用改性木质素(MZS)作为成核剂,生物质纤维(BF)作为增强剂,通过双螺杆挤出机制备了生物降解的聚乳酸(PLA)/BF/MZS材料。采用差式扫量热仪(DSC)、电子万能试验机和扫描电子显微镜(SEM)分析了BF和MZS对PLA材料性能的影响。结果表明,BF和MZS有效提高了PLA的结晶能力和力学性能。当BF和MZS的含量分别为15%和1%时,PLA材料结晶度提高至67.1%,在50℃/min降温速率下仍具有较高的结晶能力。105℃等温结晶时,15%BF和1%MZS的PLA材料半结晶时间降低至9.0 s,比纯PLA缩短了72.2%。当PLA含有3%BF和1%MZS时,拉伸强度和冲击强度分别为70.1 MPa和7.4 kJ/m^2,比纯PLA分别提高了7.8%和10.4%,根据SEM显示,当BF含量为3%时,在PLA材料中分布较均匀。  相似文献   

19.
《塑料》2017,(3)
以300目短切碳纤维(CF)和聚乳酸(PLA)为实验原料,分别配制CF质量分数为5%、10%、15%和20%的CF/PLA混合料,再经双螺杆挤出机挤出造粒后得到CF/PLA复合材料。分别以纯PLA和不同组分的CF/PLA复合材料为实验材料,在粒料3D打印机上制备抗拉伸、压缩、弯曲和冲击试样,并做力学性能测试。实验结果表明,随着CF含量的增加,材料最大拉伸强度呈先增大后减小的趋势,当CF含量为5%时,材料的平均拉伸强度最大,为48.45 MPa。材料的平均弯曲和压缩强度随CF含量的增加均呈先减小后增大再减小的趋势,且无CF填充时,二者的强度值最大,分别为114.77 MPa和103.94 MPa。材料的抗冲击强度随着CF含量的增大呈先增大后减小的趋势,当CF含量为5%时,材料的抗冲击强度最大,为14.49 kJ/m~2。  相似文献   

20.
采用熔融共混法制备了聚乳酸/聚己二酸-对苯二甲酸-丁二酯共聚物(PLA/PBAT)共混物,研究了不同含量的钛酸四丁酯(TBT)、过氧化苯甲酰(BPO)和乙酰化柠檬酸三丁酯(ATBC)对PLA/PBAT共混物(PLA/PBAT质量比为50/50)相容性的影响,同时,利用万能力学试验机、差示扫描量热仪及扫描电子显微镜对共混物的力学性能、热性能以及微观形态进行了表征。结果表明,相容剂BPO和TBT均能改善PLA/PBAT的相容性;当BPO、ATBC添加量分别为0.5份(质量份,下同)时,共混物的拉伸强度达到最大值,分别为39MPa和38MPa,使得材料刚性增加,但对材料韧性改善效果一般;当TBT添加量为0.5份时,共混物的断裂伸长率达到最大值263%,使得材料韧性提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号