首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
随着自动控制技术的飞速发展,无人化装备得到了越来越广泛的应用,智能车辆成为未来汽车产业的重要发展趋势.为实现车辆的无人操控功能,利用飞思卡尔单片机控制原理设计了一款光电智能小车.该车采用16位MC9S12XS128芯片作为主控制器,通过光电传感器采集道路信息,采用S-D5型号舵机实现小车转向,使用BTS7970半桥驱动芯片组成电机驱动模块,采用光电编码器实时监测车速,采用LM2940系列线性稳压芯片设计电源管理模块.主控制器对所采集的数据进行分析处理,并采用修正的PID控制算法调节驱动电机的转速和转向舵机的角度,实现对智能车行驶速度和运动方向的闭环控制,使其以设定的目标速度沿着道路快速稳定地自动行驶.  相似文献   

2.
设计了一种基于CCD传感器的智能小车控制系统.该控制系统以16位单片机MC9S12DG128为控制核心,采用基于CCD传感器的路径识别模块采集道路图像信息,并通过核心控制器处理实时获取的路径信息和速度信息,从而实现对舵机转向和电机转速的控制.采用CCD传感器以提高路径识别性能,可以实现智能小车控制系统的高速度与高精度.  相似文献   

3.
设计了智能车的整体软件系统.采用红外光电传感器和光电编码器分别进行道路信息与小车速度的采集,同时采用模糊控制算法和棒-棒算法分别对智能车的转向舵机和驱动电机进行控制.整个软件系统具有控制灵活、响应速度快、超调量小、鲁棒性强等优点.  相似文献   

4.
以飞思卡尔公司的16位微处理器MC9S12DG128作为核心控制单元,设计和实现了在规定的跑道上寻迹行驶的智能赛车。通过11对光电传感器对路径状况进行识别,由微控制器处理采集到的信号,然后对智能赛车的舵机转向角度和直流电机的转速进行实时的控制。  相似文献   

5.
以飞思卡尔MC9S12XS128单片机为控制芯片,设计能够自主循迹行驶的智能车。利用双排激光传感器采集路径信息,获取车中心线与路径中心线位置偏差信息;采用分段比例法控制追踪舵机转动使上排激光传感器追踪路径中央黑线、PD算法控制转向舵机转向使车沿黑线行驶;根据细化的路径信息及速度编码器所测智能车的当前速度,对控制车速的直流电机采用增量式PID算法闭环调节控制。实验结果表明,智能车能在不同弯道下对舵机及行驶速度实现准确控制,稳定快速地循迹行驶。  相似文献   

6.
介绍了一种双电机驱动的模型车控制系统,采用舵机实现转向及刹车,以Renesas H8/3048为控制核心,光电传感器收集路径信息,霍尔传感器检测电机转速.通过离散PID算法确定舵机角度及驱动电机速度.配合直角弯道算法,双电机驱动模型车转向灵活,能可靠、快速地通过直角弯道.  相似文献   

7.
介绍了一种双电机驱动的模型车控制系统,采用舵机实现转向及刹车,以RenesasH8/3048为控制核心,光电传感器收集路径信息,霍尔传感器检测电机转速.通过离散PID算法确定舵机角度及驱动电机速度.配合直角弯道算法,双电机驱动模型车转向灵活,能可靠、快速地通过直角弯道.  相似文献   

8.
为实现车辆的智能行驶,以电动小车为研究对象,设计了一种以MC9S12XS128单片机为控制核心,由电源模块、电机驱动模块、图像采集模块、舵机驱动模块等组成的硬件电路,以HQ7620摄像头采集道路信息的智能车控制系统.针对外界环境的干扰,提出了一种二值化与中值滤波相结合的滤波除噪的方法,结合边缘检测法提取有效的黑线,使小车能够沿着赛道精准快速前行.采用经典的PID控制算法对电机速度和舵机转向进行控制,通过MATLAB对PID控制参数进行整定,极大地提高了系统的实时性和稳定性.经试验验证:该系统可使小车达到1.5 m/s的稳定循迹速度,达到了自动控制的目的.  相似文献   

9.
利用测速传感器、摄像头、舵机等构成一个路径检测及控制智能车的闭环控制系统.从采集的视频信号中提取出有效信息,采用模糊控制算法进行误差模糊化,将模糊控制技术应用于智能车的速度控制中,以控制电机速度.实验结果证明了该方法有效改善了赛车弯道行驶性能,提高了智能车最优循迹策略的可靠性.  相似文献   

10.
寻迹小车采用光电传感器来识别白色路面中央的黑色引导线,通过80C51单片机实现对转向舵机和驱动电机的PWM控制,使小车实现快速稳定地寻线行驶.分模块阐述了寻迹小车的原理、软硬件设计及制作过程.针对路径特点对寻迹小车的方向控制和速度控制提出了舵机分级转向、速度分段控制的解决方案.实验表明,寻迹小车能够较快速、平稳地完成对各种曲率引导线的寻线行驶任务.  相似文献   

11.
以飞思卡尔公司的16位微控制器MC9S12DG128芯片作为该系统信号检测和控制处理的核心,设计并实现了一部能够自主循迹的智能小车.该系统的硬件设计主要包括电机驱动模块、车速检测模块、道路检测模块.利用光电传感器件对黑线进行感知获得的路线位置信号,用脉宽调制(PWM)控制方式控制伺服机构进行转向;利用采集到的后轮转速信号,运用PID控制算法对智能车的车轮转速进行控制.测试结果表明,该智能汽车能沿着赛道稳定、快速地自动行驶.  相似文献   

12.
基于视觉的智能车道路检测与转向控制策略研究   总被引:1,自引:0,他引:1  
对以FREESCALE的MC9S12DG128芯片为核心控制器的智能车采用了OV7620数字摄像头进行路径识别,再利用核心控制芯片对采集到的数据进行分析并提取出赛道黑色中心线,对赛道上出现的不规则黑色干扰信号进行过滤处理,从而准确地判别出赛道的形状,为舵机和电机提供控制依据以使小车平稳快速的行驶。并对智能车的转向控制策略的选择改进进行了分析,通过对比查表PID控制策略和模糊PID控制策略,以及具体试验观察,最终选择了模糊PID控制策略,实现了对直赛道、弯曲赛道的识别和优化处理,运行效果得到了改进,特别是在弯道处,在保证车体平稳的情况下车速有了极大的提高。  相似文献   

13.
为了实现智能车沿道路上引导线自动寻迹,研制一种基于模型汽车为硬件平台的智能车系统.该系统通过采用改进的边缘检测算法对COMS摄像头捕获的道路信息进行处理,在获取更准确图像的基础上,依靠舵机进行方向控制,通过闭环PI控制电机驱动智能车前进.本设计实现了智能车沿引导线稳定、快速行驶的功能.实验表明,此设计方案提高了智能车运行速度和稳定性.  相似文献   

14.
本设计采用STC12C5A60S2单片机为简易智能小车的核心器件。循迹模块由3对红外收发管组成,通过反射红外线的变化判断黑线的有无以达到循迹的功能,电机驱动模块选用H桥驱动芯片L293D结合单片机来控制电机工作。整个系统的电路结构简单,可靠性能高,能满足设计的要求。  相似文献   

15.
设计了一种能够自动循迹的智能小车。智能小车的控制系统以单片机MC912DG128为核心,由路径识别、车速检测、舵机控制、直流电机、电机驱动芯片LMD18200和电压转换芯片LM7525等模块组成,并详细阐述了控制系统的组成原理和软硬件设计。实验结果表明:该控制系统具有循迹效果好、性能稳定等优点。  相似文献   

16.
为了进一步提高自动巡航智能小车的速度,在图像采集部分,将模拟CCD摄像头架高并减小其俯角,并在单片机外部搭建高速AD转换电路。在驱动部分,用H桥驱动电路正反向驱动智能小车前进和刹车,结合速度编码器实时获取车速,并对其运用PD算法进行控制。在转向部分,改进舵机的安装方式为立式并架高。结论证明,智能车实现了前瞻大及转向响应灵敏,能够快速且稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号