首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用传统固相反应法对水热BaTiO3粉体进行La2O3和MgO复合掺杂改性.研究(Ba1-xLax)(Ti1.x/2Mgx/2)O3体系的烧结性能、相组成、微观结构及介电性能.研究结果表明:随着掺量x的增加,烧结温度提高,晶体结构逐渐由四方相转为立方相.当x=0.0025时,以Mg2+固溶取代Ti4+位占优势,晶格常数增加;当x≥0.2时,La3+固溶取代Ba位占优势,晶格常数下降.随着掺量的增加,晶粒尺寸减小.x=0.4时,平均晶粒尺寸约为0.33 μm,晶粒大小均匀,材料致密.随着掺量的增加,居里温度下降,居里峰展宽,电阻率提高.高掺量情况下(x≥0.2),随着掺量的增加,介电常数增加,介电常数随温度的变化率降低.BaTiO3-La2O3-MgO体系材料可以作为介电特性较为稳定、小尺寸、大容量的片式陶瓷电容器的介质材料.  相似文献   

2.
采用传统固相反应法对水热BaTiO3粉体进行La2O3和MgO复合掺杂改性.研究(Ba1-xLax)(Ti1.x/2Mgx/2)O3体系的烧结性能、相组成、微观结构及介电性能.研究结果表明随着掺量x的增加,烧结温度提高,晶体结构逐渐由四方相转为立方相.当x=0.0025时,以Mg2+固溶取代Ti4+位占优势,晶格常数增加;当x≥0.2时,La3+固溶取代Ba位占优势,晶格常数下降.随着掺量的增加,晶粒尺寸减小.x=0.4时,平均晶粒尺寸约为0.33 μm,晶粒大小均匀,材料致密.随着掺量的增加,居里温度下降,居里峰展宽,电阻率提高.高掺量情况下(x≥0.2),随着掺量的增加,介电常数增加,介电常数随温度的变化率降低.BaTiO3-La2O3-MgO体系材料可以作为介电特性较为稳定、小尺寸、大容量的片式陶瓷电容器的介质材料.  相似文献   

3.
采用固相烧结法,研究了不同温度和配方Bi_2O_3-TiO_2-TeO_2体系陶瓷的低温烧结情况,研究了产物物相、微观结构和微波介电性能.研究表明,配方A(Bi_2O_3:TiO_2:TeO_2=1:3:1)在800 ℃以上煅烧可制备出较纯净的Bi_6Ti_5TeO_(22),配方B (Bi_2O_3:TiO_2:TeO_2=1.025:3:1)在700℃以上煅烧可制备纯净的Bi_2Ti_3TeO_(12)粉末.所得Bi_6Ti_5TeO_(22)和Bi_2Ti_3TeO_(12)粉末都能在750~900 ℃度实现低温烧结.配方B在750℃烧结的介电性能较好,ε_r=32.5,介电损失为0.20%(100 MHz).  相似文献   

4.
在准同型相界MPB附近即Zr/Ti比为52/48时采用固相烧结法分别制备了过量Pb含量分别为0at%、5at%、10at%、15at%的PZT压电陶瓷.分别采用TG/DSC分析仪、X射线衍射仪、扫描电镜和阻抗分析仪LCR分析了粉体的热分解温度;表征了PZT压电陶瓷的微结构;讨论了过量Pb对PZT陶瓷的介电性能的影响.结果表明:在Pb过量依次为0at%、5at%、10at%、15at%,1200℃烧结2h时,均得到了晶界清晰,晶粒尺寸分布均匀,具有纯钙钛矿结构的PZT压电陶瓷.同时在1KHz时,PZT靶材的介电常数随过量Pb含量的增大先增大后减小,并在x(Pb)=10at%时介电常数达到最大值298,且介电损耗为0.0984.所制备的压电陶瓷均可用在磁控溅射或脉冲激光沉积镀膜中,这为压电薄膜的制备奠定了基础.  相似文献   

5.
采用传统高温直接烧结和低温保温的两步烧结工艺制备铋层结构铁电陶瓷Sr0.3Ba0.7Bi3.7La0.3Ti4O15,获得结构致密、均匀、粒径介于1~3μm的陶瓷材料.结合XRD和SEM分析研究烧结工艺对陶瓷的晶相、显微结构和介电性能的影响.研究表明:采用两步烧结法使铋挥发和氧空位浓度降低,从而显著减弱了陶瓷的高温低频耗散.随着保温时间的增加,晶格畸变减少,居里温度降低了60℃左右.高温绝缘性也得到明显改善,高温电导率随保温时间的增加显著降低,保温15 h所得陶瓷样品的电导率降低了一个数量级,在280℃时为5.2×10-9S·m-1.  相似文献   

6.
Al2O3具有优异的电性能和物理性能,将Al2O3作为CaO-B2O3-SiO2系微晶玻璃陶瓷材料的烧结助剂,能够起到良好的助烧作用.用X-Ray,SEM,TG-DTA和介电频谱测试等方法系统研究了Al2O3含量对CaO-B2O3-SiO2系微晶玻璃陶瓷材料烧结性能、介电性能和微观结构等的影响.结果表明,有适量的Al2O3添加的该体系陶瓷材料能够在低温(<900℃)烧结.烧结体在高频下具有低介电常数和低介电损耗(ε<5,tg<0.0013;1MHz~1.8GHz).Al2O3含量的增加使得CaO-B2O3-SiO2系玻璃陶瓷材料的烧结温度发生变化,而对烧结体的介电性能影响不大.  相似文献   

7.
通过固相反应合成法制备了La_2Ti_2O_7陶瓷,研究了SrCO_3掺杂对La_2Ti_2O_7陶瓷的电学性能的影响,并对导电机理做了初步的探讨分析.实验表明,随着Sr量的增加,电导激活能有下降的趋势,导致材料的电导率增加.在100 Hz~10 MHz频率下未掺杂Sr和掺杂量为x=0.01试样的介电常数分别为46和67,介电损耗都在1×10~(-3)数量级,说明这种材料具有较好的介电性能.  相似文献   

8.
利用固相法制备BaSm_2Ti_4O_(12)(BST)微波介质陶瓷.研究了复合添加Li_2CO_3-B_2O_3-SiO_2-CaO-Al_2O_3(LBSCA)和BaO-B_2O_3-SiO_2(BBS) 玻璃料对BaSm_2Ti_4O_(12)微波介质陶瓷的烧结性能、介电性能、相组成和微观结构的影响.研究表明:复合掺杂10% LBSCA和2%~5% BBS可使烧结温度降至900 ℃.XRD分析表明复合掺杂两种玻璃料的BST陶瓷主晶相为BaSm_2Ti_4O_(12)相,玻璃料以玻璃相的形式存在陶瓷晶粒间.复合掺杂10% LBSCA+3%BBS玻璃料的BST陶瓷可在900 ℃、保温2 h条件下烧结致密,微波介电性能为:ε_r =55.63,Q_f = 4266 GHz,τ_f= -13.5×10~(-6)℃~(-1),这种陶瓷材料有望与纯Ag电极共烧,制作各种多层微波频率元器件.  相似文献   

9.
用高温固相烧结法制备了V~(5+)掺杂的Bi_3.25La_0.75Ti_3O_(12)(BLT)层状结构铁电陶瓷.利用XRD对Bi_3.25La_0.75Ti_(3-x)VxO_(12+x/2)(BLTV-x)材料结构进行了晶相分析,结果表明所制备的陶瓷均具有单一的正交相结构.样品的介电常数温度谱显示:V~(5+)掺杂提高了材料的介电常数,x=0.03时介电常数最大,但样品的居里温度并没有发生大的变化.样品的介电损耗谱表明:由于V~(5+)掺入,由氧空位引起的样品介电损耗被极大的压制,在x=0.06时损耗最小.通过对材料的直流电导与温度关系的Arrhenius拟合,分析了样品的导电机理,结果显示V~(5+)的掺杂大大降低了材料中氧空位的浓度,使得陶瓷样品的电性能得到了很好的改善.  相似文献   

10.
采用传统固相反应法,将ZnO-B2O3(ZB)与1 100℃预烧的CaCu3Ti4O12(CCTO)粉末混合烧结成陶瓷。探讨ZB对CCTO陶瓷显微结构和介电性能的影响,并进一步分析CCTO陶瓷的巨介电机理。结果表明:当添加少量ZB(w≤2%,质量分数)时,形成体心立方BCC类钙钛矿结构的CCTO单相;当w>2%时,生成Zn2TiO4杂相;当ZB的添加量为0.5%和10%时,CCTO陶瓷的介电常数明显增大,介电损耗也较高;而当ZB的添加量为1.0%~5.0%时,介电常数的变化很小,同时具有较低的损耗和良好的温度稳定性。其中,w=2%时CCTO基陶瓷具有优异的介电性能(100 kHz),即相对介电常数εr=336,介电损耗tanδ=0.018,介电常数温度系数τε=-1.5×10-5℃-1。ZB掺杂CCTO基陶瓷的阻抗谱表明:CCTO陶瓷由半导体化晶界和相对绝缘的晶粒构成,因此,其具有巨介电常数。  相似文献   

11.
采用溶胶凝胶法,在孔径为200 nm的阳极氧化铝模板中制备了Bi_3.15Nd_0.85Ti_3O_(12)纳米管阵列.通过XRD、SEM、TEM、HRTEM、SAED和Raman光谱测试手段对纳米管阵列的物相、微结构和声子振动特性进行了表征.研究表明,所合成BNdT纳米管为钙钛矿相多晶结构,纳米管外径约为200 nm,管壁厚约10 nm,管径和长度与所用AAO模板尺寸一致.Raman光谱分析表明,Nd离子取代了类钙钛矿层中A位的Bi离子.  相似文献   

12.
用固相合成方法制备了Sr_2Bi_4Ti_5O_(18)铁电陶瓷,研究了烧结温度对Sr_2Bi_4Ti_5O_(18)铁电陶瓷相结构、显微结构、铁电性能和介电性能的影响,分析了相关机理.结果表明,在1150C℃进行烧结,样品晶粒发育完全,晶粒α轴择优取向,铁电性能优良,剩余极化强度2P,达到15.3μC/cm2、矫顽场强2E_c为103kV/cm;在100kHz~1MHz频率范围内,介电常数为176~168,介电损耗为0.027~0.025,具有较好的频率稳定性.  相似文献   

13.
以纳米TiO_2和Li_2CO_3为原料,通过固相反应法制备负极材料Li_4Ti_5O_(12),研究焙烧温度和时间对合成Li_4Ti_5O_(12)样品电化学性能的影响.利用TG、XRD、SEM 和充放电测试表征Li_4Ti_5O_(12)的物理性能和充放电性能.结果表明:焙烧温度的选择比延长焙烧时间对Li_4Ti_5O_(12)的性能影响更大,提高焙烧温度和延长焙烧时间,都能够促进晶体结构的完整,改善材料的电化学性能;经800 ℃焙烧24 h得到的Li_4Ti_5O_(12)首次放电容量为167mA·h/g,经过80次充放电循环,容量几乎没有衰减;对Li_4Ti_5O_(12)充电到0.5 V,充电曲线上均观察到明显的极化现象,极化程度同活性物质的颗粒大小和结合情况有关.  相似文献   

14.
以Pt(111)/Ti/SiO_2/Si为基片,采用溶胶凝胶法,通过紫外光辐照钕掺杂钛酸铋(Bi_(4-x)Nd_xTi_3O_(12), x=0.25, 0.75)胶体,分别采用电泳沉积和甩胶沉积制备薄膜,并对比了制备的薄膜质量.通过差热-热重分析(DSC-TG)、X射线衍射(XRD)、原子力显微镜(AFM)等技术手段对Sol-Gel法制备的BNT薄膜进行了表征.研究结果表明,经紫外光辐照和电泳沉积制备的Bi_(4-x)Nd_xTi_3O_(12) (x=0.25, 0.75) 薄膜于300 ℃煅烧有机物,500 ℃随炉热处理,可得到均匀致密且(117)择优取向的钙钛矿相BNT薄膜.  相似文献   

15.
采用原位热压工艺制备了高纯Ti_3Si_0.6Al_0.6C_1.98陶瓷,并测试了性能.以单质的Ti、Si、Al和石墨粉为原料,摩尔比Ti:Si:Al:C=3:0.6:0.6:1.98,在1500 ℃,30 MPa压力下保温1 h,高纯Ar气保护,制备试样的主要物相为Ti_3Si_0.6Al_0.6C_1.98.制备的Ti_3Si_0.6Al_0.6C_1.98陶瓷的密度为(4.43±0.23) g/cm~3,电阻率为(0.31±0.01)μΩ·m,抗弯强度为(245.46±22.04) MPa,维氏硬度为(2.91±0.32) GPa, 断裂韧性为(5.63±0.39) MPa·m~(1/2).Ti_3Si_0.6Al_0.6C_1.98陶瓷中晶粒以板状晶为主,晶粒层状结构明显,断口形貌显示主要为穿晶断裂,晶粒的分层断裂、微裂纹的偏转桥接及滑移使材料具有独特的压痕特征.  相似文献   

16.
锂离子电池负极材料Li_4Ti_5O_(12)的原位水解合成与表征   总被引:1,自引:0,他引:1  
以TiCl_4水溶液和LiOH·H_2O为原料,采用原位水解与后续热处理相结合的方法制备尖晶石型锂离子电池用负极材料Li_4Ti_5O_(12).结果表明:从TiCl_4水溶液原位水解合成Li_4Ti_5O_(12)经历由TiCl_4→TiO_2→Li_2TiO_3→Li_4Ti_5O_(12) 3个阶段的原位相转变过程;TiCl_4水溶液的浓度及稳定性对合成Li_4Ti_5O_(12)的结构有较大的影响;随着TiCl_4浓度的增加,合成纯Li_4Ti_5O_(12)所需的水解时间延长;以0.5 mol/L TiCl_4水溶液水解1 h、以添加1.0 mol/L LiCl的0.5 mol/L TiCl_4水溶液水解3 h、以1.0 mol/L与1.5 mol/L TiCl_4水溶液水解5 h均可获得纯Li_4Ti_5O_(12);由低浓度TiCl_4水溶液合成的Li_4Ti_5O_(12)循环性能优良.  相似文献   

17.
采用浆液合成法和加糖热解法分别合成了具有层状结构和正常钙钛矿结构的Na_0.5Bi_0.5TiO_3纳米粉体.两种粉体以不同比例混合烧结成瓷,性能测试表明,当以1:1的比例混合时,陶瓷的烧缩率达到最大值,击穿场强达到最大值,压电常数d_(33)=75×10~(-12) C/N.浆液合成法制备的粉体获得的陶瓷,压电常数达到最大值,d_(33)=88×10~(-12) C/N.加糖热解法制备的粉体获得的陶瓷d_(33)=65×10~(-12) C/N.两种方法制备的粉体及其混合所制备的陶瓷,均得到比较好的压电性能.  相似文献   

18.
以CaCO_3、TiO_2、CuO为原料,采用两种工艺途径制备了(1-x)CCTO-xCTO(0≤x≤1)复合陶瓷材料.采用X射线衍射仪、扫描电子显微镜、阻抗分析仪对(1-x)CCTO-xCTO复相陶瓷的相组成、显微结构特征和介电性能进行了研究,发现不同工艺途径制备的(1-x)CCTO-xCTO复合陶瓷的显微结构略有差异,但介电性能基本相同,表明两种工艺途径制备的陶瓷中CCTO和CTO具有相似的连接情况.此外,还发现2/8CCTO-6/8CTO复合陶瓷在室温和1 kHz频率时,材料的介电常数ε接近1500,且介电损耗tgδ小于0.08.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号