首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric properties and their related microstructural characteristics in solid solutions of (1 – x )Ba(Mg1/3Nb2/3)O3– x Sr(Mg1/3Nb2/3)O3 (BMN–SMN, or BSMN) were investigated by measuring the relative permittivity (ɛr), Q values, and temperature coefficient of resonator frequency (τf), and by observing microstructure using transmission electron microscopy. When the tolerance factor ( t ) was >0.99 in BSMN with composition 0 < x < 0.5, where the tilting of oxygen octahedra was not involved, the microstructure included only 1:2 ordered phase. In the region where 0.99 > t > 0.97 with 0.7 < x < 1.0, the phase due to the antiphase tilting of oxygen octahedral, the disordered phase, and the 1:2 ordered phase were also present. In a few of the grains, core–shell-type structures, whose main components were dislocations and stacking faults, were found in the solid solution of BSMN.  相似文献   

2.
Microstructural studies of the complex perovskite compound La(Mg2/3Nb1/3)O3 (LMN) were conducted using transmission electron microscopy (TEM) and X-ray diffractometry (XRD) at elevated temperatures. 1:1 chemical ordering of B-site cations and tilting of oxygen octahedra were observed in LMN. Three types of superlattice reflections, [1—2]{111}, [1—2]{110}, and [1—2]{100} were observed at room temperature and at 800°C in electron diffraction patterns. In the XRD experiments, the [1—2]{210} and [1—2]{300} extra peaks disappeared at temperatures >1200°C. However, the intensity of the superlattice [1—2]{111} peak did not change with increased temperature up to 1400°C. These results strongly indicated that the origin of superlattice reflection [1—2]{111} was different from that of the other superlattice reflections. It was mainly caused by the 1:1 chemical ordering of magnesium and niobium atoms. The TEM image observed at 800°C showed the ordered domain structures separated by the antiphase boundaries.  相似文献   

3.
Microstructural studies of the domain boundaries in the complex perovskite compound lanthanum magnesium niobate (La[Mg2/3Nb1/3]O3, LMN) were conducted using transmission electron microscopy. Both the 1:1 chemical ordering of B-site cations and the tilting of oxygen octahedra affected the domain boundaries. Two types of domain boundaries were observed. In addition to the presence of antiphase boundaries, which were insensitive to the crystallographic planes, ferroelastic domain boundaries that were caused by the phase transition due to the tilting of oxygen octahedra also were present. In some grains, only one type of oxygen tilting was present, which resulted in a single domain in one grain. Two or three domains were observed in a grain where the walls were parallel to the {110} plane. Many domains also were observed in a grain that had boundaries whose linear characteristics were gradually reduced.  相似文献   

4.
This study investigates the effect of CaZrO3 (CZ) substitution on the evolution of an ordered structure in a Ca(Mg1/3Nb2/3)O3 (CMN) system using Raman spectroscopy, X-ray diffractometry, and transmission electron microscopy. It indicates that a (1− x ) CMN−( x )CZ solid solution has the 1:2 and 1:1 ordered structure distorted by the antiphase, the inphase tilting of oxygen octahedra, and the antiparallel shift of A-site cation. A distinct correlation is noted between the transition of the ordered structure and microwave dielectric properties. The differences in ɛr and τf are attributed exclusively to the differences in the type of cation arrangement. The structure with the 1:2 ordering exhibits a lower relative permittivity and a more negative τf than the structure with the 1:1 ordering. The increased fraction of compressed Nb–O bond in the 1:2 ordered structure associated with a large NbO6 octahedral distortion is correlated with a decrease in relative permittivity and change of τf toward more negative values. Simultaneously, the substitution of the Zr4+ ion causes a linear increase in polarizability, and it also results in an increase in the relative permittivity.  相似文献   

5.
The dielectric properties and microstructural characteristics in solid solutions of Ba1− x La x [Zn(1+ x )/3Nb(2− x )/3]O3 (BLZN) are investigated by measuring and observing these properties, respectively, by means of transmission electron microscopy and Raman spectroscopy. The 1:1 ordered structure of BLZN can be explained by the random-site model for the distribution of B-site cations. The decrease in the tolerance factor ( t ) by lanthanum substitution causes the tilting of oxygen octahedra. It appears that the onset of antiphase and inphase tilting causes the variation in the temperature coefficient of resonant frequency (τf). In the untilted region where t ≥1.01, the τf shows a linear increase with decreasing tolerance factor. The region of antiphase tilting, where 0.965≤ t <1.01, causes a rapid decrease in τf, including the reverse sign. The τf slowly increases, where t <0.965, which is due to the presence of inphase tilting of oxygen octahedra. The τf can be predicted by using the tolerance factor, and the near zero of τf can be obtained with lanthanum substitution in the solid solution of the BLZN system.  相似文献   

6.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

7.
Microstructural studies on (1 − x )Ba(Mg1/3Nb2/3)O3– x Ca(Mg1/3Nb2/3)O3 (BCMN) complex perovskite compounds, which are mixtures of Ba(Mg1/3Nb2/3)O3 (BMN) and Ca(Mg1/3Nb2/3)O3 (CMN), were conducted using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. Pure BMN and CMN both have a 1:2 ordered structure, via the chemical ordering of B-site cations; however, the tilting of oxygen octahedra is involved in pure CMN, whose structure has a 1:2 ordered monoclinic unit cell that is characterized by (±1/6,±1/6,±1/6)-type superlattice reflections in electron diffraction patterns along the [110] zone axis that is based on a simple cubic perovskite. Studies of the morphologic differences have indicated two types of inhomogeneities in a mixture of the BCMN system: (i) a rather large-scale segregation (i.e., grain sizes of several micrometers), where the grains are separated compositionally as being barium-rich or calcium-rich, and (ii) fine-scale lamellar-type segregations 20 nm wide and 200 nm long. The segregation that is caused by Ba and Ca ions can be identified by the difference of superlattice modulations from high-resolution transmission electron microscopy lattice images.  相似文献   

8.
Atomic structural observations on the antiphase boundaries (APBs) in the complex barium lanthanum magnesium niobate perovskite compound Ba0.7La0.3(Mg0.43Nb0.57)O3 (BLMN), which has a 1:1 chemical ordering of B-site cations, were conducted using high-resolution transmission electron microscopy. Using APB contrast, the curved APB was determined to have a ledged structure, with a terrace that was composed of the (111) plane at an atomic level. In APBs with finite widths, microfacets on the (111) planes also were observed.  相似文献   

9.
Single-phase perovskite lead-based ferroelectric powders—Pb(Mg1/3Nb2/3)O3(PMN) or 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3(0.9PMN–0.1PT)—were prepared using Mg(NO3)2, instead of MgO or MgCO3, via a mixed-oxide method and one-step calcination. The reaction proceeded via the formation of 3Pb(NO3)2·7PbO, Pb(OH)2, tetragonal PbO, and then 2PbO–Nb2O5(P2N) for PMN or 3PbO–Nb2O5(P3N) for PMN–PT; a mixture of PMN and Pb2(Mg x Nb1.33)O5.33+ x then formed, followed finally by the formation of single-phase PMN or 0.9PMN–0.1PT. Such prepared powder showed excellent room-temperature dielectric constants—13800 for PMN or 22600 for 0.9PMN–0.1PT—by sintering at a temperature of 900°C for 2 h.  相似文献   

10.
Ca(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE01δ mode. With increasing the Ba(Zn1/3Nb2/3)O3 thickness fraction, the resonant frequency ( f 0) decreased, while the effective dielectric constant (ɛ r ,eff) and temperature coefficient of resonant frequency (τ f ) increased. Good microwave dielectric characteristics were attained for the samples with the Ba(Zn1/3Nb2/3)O3 thickness fraction of 0.5: ɛ r ,eff=34.33, Q × f =57 930 GHz and τ f =2.6 ppm/°C. Finite-element method was used to predict the microwave dielectric characteristics of the layered resonators and good agreements were attained between the experimental results and predicted ones. Also, both experiment and finite-element analysis indicated that the effects of the adhesive on f 0, ɛ r ,eff, and τ f were slight, while that on Q × f value was significant.  相似文献   

11.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

12.
Microstructural studies on the domain boundaries in Ca(Mg1/3CNb2/3)O3 (CMN) complex perovskite compound were conducted using X-ray diffractometry and transmission electron microscopy. The 1:2 chemical ordering of B-site cations and the tilting of oxygen octahedra were involved in the CMN microstructure, as inferred from the presence of two types of domain boundaries. One type was the antiphase boundaries (APBs), which did not lie on a specific set of crystallographic planes. These boundaries were caused by the chemical 1:2 ordering of B-site cations, magnesium and niobium. The other type was the ferroelastic domain boundaries, which were parallel to a certain crystallographic plane. Therefore, CMN had the 1:2 ordered monoclinic unit cell distorted by the antiphase or in-phase tilting of oxygen octahedra. CMN had the mixed phases rather than the homogeneous phase.  相似文献   

13.
Microstructural studies were conducted on the domain boundaries in Sr(Mg1/3Nb2/3)O3 (SMN) complex perovskite compound using X-ray diffractometry and transmission electron microscopy. Both the 1:2 chemical ordering of B-site cations and the tilting of oxygen octahedra were involved in SMN. SMN had a 1:2 ordered monoclinic unit cell, which was distorted by the antiphase tilting of oxygen octahedra. Two types of domain boundaries were found: the antiphase boundaries (APBs), which are not confined crystallographically, and the ferroelastic domain boundaries, which were parallel to the crystallographic planes. SMN had the superlattice reflections of type ±⅙[111] and ±½[111] in the electron diffraction patterns, which cannot be indexed in terms of the 1:2 ordered trigonal phase with only a hexagonal unit cell. The presence of the ferroelastic domains that contained both the 1:2 ordered and the antiphase tilting had been verified by a high-resolution transmission electron microscopy lattice image. The structure of SMN was well explained by a model proposed by other researchers. The formation of the 1:2 ordered domains preceded the ferroelastic domains. Normally, the growth of the ferroelastic domain is not affected by APBs, but it is interrupted by them when the driving force for growth is insufficient, resulting in the stoppage of the domains at APBs.  相似文献   

14.
Highly ordered Ba(Mg1/3Nb2/3)O3 ceramics from hydrothermal powders were investigated for the first time using infrared spectroscopy. The experimental data were analyzed in view of the 16 predicted modes of the trigonal structure and adjusted by a four–parameter semiquantum model. The obtained phonon parameters allowed us to calculate the real part of the dielectric permittivity and losses in all infrared regions, and also to estimate the quality factor ( Q ) for this material in the microwave region. The values obtained for the dielectric permittivity (ɛ'= 19) and Q (12 800 at 10 GHz) showed that hydrothermal Ba(Mg1/3Nb2/3)O3 ceramics are good materials for passive components in microwave circuits.  相似文献   

15.
The Ca(B'1/2Nb1/2)O3 [B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] complex perovskites have been prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscopy methods. The ceramics have dielectric constant (ɛr) in the range 23–32, normalized Q -factor ( Q u× f ) 11 000–38 000 GHz and temperature coefficient of resonant frequency (τf) −43–5.2 ppm/°C. The microwave dielectric properties of Ca(B'1/2Nb1/2)O3 ceramics are found to depend on the ionic radii of B'-site elements and tolerance factor ( t ). The substitution of Ba2+ and Sr2+ for Ca2+ resulted a phase transition in Ca(B'1/2Nb1/2)O3 ceramics. The (Ca0.05Ba0.95) (Y1/2Nb1/2)O3 has τf close to zero (1.2 ppm/°C) with ɛr=35 and Q u× f =48 500 GHz and is proposed as a useful material for base station applications. Dielectric properties of the Ca(B'1/2Nb1/2)O3 ceramics were tailored by the addition of TiO2 and CaTiO3.  相似文献   

16.
The ordered domain structures in Pb(Mg1/3Nb2/3)O3(PMN) and Pb1– x La x (Mg1/3Nb2/3)O3 are identified using high-resolution transmission electron microscopy (HRTEM) and nanobeam diffractometry (NBD). The chemical compositions in the ordered domains and in the disordered matrices are also acquired using energy-dispersive spectroscopy (EDS). The best matching computer-simulated HRTEM image has a Mg2+/Nb2+ ratio of return ½. There is no obvious chemical composition difference between the ordered domains and the disordered matrices. The number of the normalized total positive valence electrons remains almost constant in the ordered domains and in the disordered matrices for all the samples. The reason for the growth of the ordered domains in La-doped PMN also is discussed.  相似文献   

17.
18.
Microstructural characterizations on the (1− x )La2/3TiO3· x LaAlO3 (LTLA) system were conducted using transmission electron microscopy. The presence of La2Ti2O7 and La4Ti9O24 phases in pure La2/3TiO3 is confirmed by the electron diffraction pattern. When x = 0.1, the ordering due to the A-site vacancies could be confirmed by the presence of antiphase boundaries (APBs) and return ½(100) superlattice reflection. As x increases, the ordering decreases and finally disappears when x = 0.6. The tilting of oxygen octahedra could be demonstrated by the presence of the ferroelastic domains in the matrix and return ½(111) and return ½(110) superlattice reflections in selected area electron diffraction patterns. In pure LaAlO3, only the antiphase tilting of oxygen octahedra is present due to the presence of return ½(111) superlattice reflection. In the LTLA system of x = 0.1, both the antiphase and in-phase tiltings of the oxygen octahedra are involved; however, in the range of x from 0.3 to 0.9, the antiphase tilting of oxygen octahedra has appeared. The growth of the ferroelastic domains is influenced by the APBs in the matrix.  相似文献   

19.
The columbites MgNb2O6, MgTa2O6, and corundum-type Mg4Nb2O9 ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the sintered samples were investigated by X-ray diffraction and scanning electron microscopic techniques. The microwave dielectric properties of the samples were measured by the resonance method in the frequency range 4–6 GHz. The dielectric properties have been tailored by forming a solid solution between MgNb2O6 and MgTa2O6 and by the substitution of TiO2 for Nb2O5 in both MgNb2O6 and Mg4Nb2O9 ceramics. The Mg(Nb0.7Ta1.3)O6 has ɛr=29, Q u× f =67 800 GHz, and τf=0.8 ppm/°C and the MgO–(0.4)Nb2O5–(1.5)TiO2 composition has ɛr=34.5, Q u× f =81 300 GHz, and τf=−2 ppm/°C.  相似文献   

20.
A complete range of perovskite solid solutions can be formed in the (1 − x )Ba(Mg1/3Nb2/3)O3- x La(Mg2/3Nb1/3)O3 (BMN-LMN) pseudobinary system. While pure BMN adopts a 1:2 cation ordered structure, 1:1 ordered phases are stabilized for 0.05 ≤ x ≤ 1.0. Dark-field TEM images indicate that the La-doped solid solutions are comprised of large 1:1 ordered domains and no evidence was found for a phase-separated structure. This observation coupled with the systematic variations in the intensities of the supercell reflections supports a charge-balanced "random-site" model for the 1:1 ordering. The substitution of La also induces a transformation from a negative to positive temperature coefficient of capacitance in the region 0.25 ≤ x ≤ 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号