首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Bacillus thuringiensis (Bt) crystal toxins are safe biological insecticides, but have short persistance and are poorly effective against pests that feed inside plant tissues. Production of effective levels of these proteins in plants has required resynthesis of the genes encoding them. We report that amplification of an unmodified crylA(c) coding sequence in chloroplasts up to approximately 10,000 copies per cell resulted in the accumulation of an unprecedented 3-5% of the soluble protein in tobacco leaves as protoxin. The plants were extremely toxic to larvae of Heliothis virescens, Helicoverpa zea, and Spodoptera exigua. Since the plastid transgenes are not transmitted by pollen, this report has implications for containment of Bt genes in crop plants. Furthermore, accumulation of insecticidal protein at a high level will facilitate improvement in the management of Bt resistant insect populations.  相似文献   

2.
Some toxins from scorpion venoms, much more toxic to insects than to other animal classes, possess high affinity to Na+ channels. These anti-insect scorpion toxins have been divided into: 1) alpha toxins which lack strict selectivity for insects, do not compete with following groups of anti-insect toxins, resemble other alpha scorpion toxins by their structure and their ability, as alpha anemone toxins, to prolong insect axonal action potential durations through a drastic slowing down of the Na+ current inactivation, 2) excitatory insect selective scorpion toxins which induce in blowfly larvae an immediate fast paralysis; in isolated cockroach axons, they depolarize and induce a sustained repetitive activity of short (normal) action potentials through a shift of Na+ activation mechanism towards more negative potentials and some decrease of inactivation at these potential values, 3) depressant insect selective neurotoxins which cause a slow progressive flaccid paralysis of larvae, depolarize insect axons and reduce or even suppress evoked action potentials; resting depolarizations which are antagonized by a post-application of TTX, are due to the opening of sodium channels at very negative potential values and to the suppression of their inactivation mechanism. The decrease of the maximal Na+ conductance following flaccid toxin action may be understood if toxin-modified channels opened at very negative potentials values remain open (or re-open) for much longer times than in control conditions and pass by substate less conductant states. Anti-insect scorpion toxins become of major interest into insect neurophysiology and also into insect pest control, due to their specific target sites and to the recent constructions of insecticidal baculovirus expressions of several of these toxins.  相似文献   

3.
Generation of insect-resistant, transgenic crop plants by expression of the insecticidal crystal protein (ICP) gene of Bacillus thuringiensis (Bt) is a standard crop improvement approach. In such cases, adequate expression of the most appropriate ICP against the target insect pest of the crop species is desirable. It is also considered advantageous to generate Bt-transgenics with multiple toxin systems to control rapid development of pest resistance to the ICP. Larvae of yellow stem borer (YSB), Scirpophaga incertulas, a major lepidopteran insect pest of rice, cause massive losses of rice yield. Studies on insect feeding and on the binding properties of ICP to brush border membrane receptors in the midgut of YSB larvae revealed that cryIAb and cryIAc are two individually suitable candidate genes for developing YSB-resistant rice. Programs were undertaken to develop Bt-transgenic rice with these ICP genes independently in a single cultivar. A cryIAc gene was reconstructed and placed under control of the maize ubiquitin 1 promoter, along with the first intron of the maize ubiquitin 1 gene, and the nos terminator. The gene construct was delivered to embryogenic calli of IR64, an elite indica rice cultivar, using the particle bombardment method. Six highly expressive independent transgenic ICP lines were identified. Molecular analyses and insect-feeding assays of two such lines revealed that the transferred synthetic cryIAc gene was expressed stably in the T2 generation of these lines and that the transgenic rice plants were highly toxic to YSB larvae and lessened the damage caused by their feeding.  相似文献   

4.
5.
Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing anti-insect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion alpha-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides.  相似文献   

6.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRP), which is the central catalytic enzyme of HCV replicase. We established a new method to purify soluble HCV NS5B in the glutathione S-transferase-fused form NS5Bt from Escherichia coli which lacks the C-terminal 21 amino acid residues encompassing a putative anchoring domain (anino acids 2990-3010). The recombinant soluble protein exhibited RdRP activity in vitro which was dependent upon the template and primer, but it did not exhibit the terminal transferase activity that has been reported to be associated with the recombinant NS5B protein from insect cells. The RdRP activity of purified glutathione S-transferase-NS5Bt and thrombin-cleavaged non-fused NS5Bt shares most of the properties. Substitution mutations of NS5Bt at the GDD motif, which is highly conserved among viral RdRPs, and at the clustered basic residues (amino acids 2919-2924 and 2693-2699) abolished the RdRP activity. The C-terminal region of NS5B, which is dispensable for the RdRP activity, dramatically affected the subcellular localization of NS5B retaining it in perinuclear sites in transiently overexpressed mammalian cells. These results may provide some clues to dissecting the molecular mechanism of the HCV replication and also act as a basis for developing new anti-viral drugs.  相似文献   

7.
The present study examines the similarity in the symptoms and binding properties between the depressant and excitatory insect-selective neurotoxins, derived from scorpion venom. A comparison of their primary structures and neuromuscular effects is presented. A new depressant toxin (LqhIT2) was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic its effects on the intact insect, i.e, a brief period of repetitive bursts of regular junction potentials (JPs) is followed by reduced amplitude JPs ending with a block of the neuromuscular transmission. "Loose" patch clamp recordings indicate that the repetitive activity has a presynaptic origin (the motor nerve) and resembles the effect of the excitatory toxin AaIT. The final synaptic block is supposed to be the end result of neuronal membrane depolarization. Such an effect is not caused by an excitatory toxin, which induces long "trains" of repetitive firing. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation indicating a high degree of sequence homology. This conservation differs from those of other groups of scorpion toxins. The opposing pharmacological effects of depressant toxins are discussed in light of the above neuromuscular effects and sequence analysis. A genetic approach in the study of the structure-function relationships of the depressant toxins was initiated by isolating cDNA clones encoding the LqhIT2 and BjIT2 toxins. Their sequence analysis revealed the precursor form of these toxins: A 21 amino acid residue signal peptide followed by a 61 amino acid region of the mature toxin, and three additional amino acids at the carboxy terminus.  相似文献   

8.
The control of mosquitoes with chemical insecticides pollutes the environment and leads to resistance in mosquito populations. Bacterial control of mosquito larvae with Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis, which produce protein toxins, has proved useful, safe, and nonpolluting. These bacteria do, however, suffer from disadvantages, including rapid setting, UV sensitivity, and lack of persistance of spores, proteolysis of toxins, narrow host range, and high production costs. Here we show that the Gram-negative bacterium Asticcacaulis excentricus is a promising host for delivering toxins to mosquito larvae. Plasmid-transformed A. excentricus cells expressing the binary toxin of B. sphaericus exhibited toxicity to Culex and Anopheles mosquito larvae similar to that of the high-toxicity strains of B. sphaericus which produce several toxins. A. excentricus has potential advantages as a larvicide compared with the bacilli, especially persistance in the larval feeding zone, resistance to UV light, lack of toxin-degrading proteases, and low production costs.  相似文献   

9.
Two new toxins were purified from Leiurus quinquestriatus hebraeus (Lqh) scorpion venom, Lqh II and Lqh III. Lqh II sequence reveals only two substitutions, as compared to AaH II, the most active scorpion alpha-toxin on mammals from Androctounus australis Hector. Lqh III shares 80% sequence identity with the alpha-like toxin Bom III from Buthus occitanus mardochei. Using bioassays on mice and cockroach coupled with competitive binding studies with 125I-labeled scorpion alpha-toxins on rat brain and cockroach synaptosomes, the animal selectivity was examined. Lqh II has comparable activity to mammals as AaH II, but reveals significantly higher activity to insects attributed to its C-terminal substitution, and competes at low concentration for binding on both mammalian and cockroach sodium channels. Lqh II thus binds to receptor site 3 on sodium channels. Lqh III is active on both insects and mammals but competes for binding only on cockroach. The latter indicates that Lqh III binds to a distinct receptor site. Thus, Lqh II and Lqh III represent two different scorpion toxin groups, the alpha- and alpha-like toxins, respectively, according to the structural and pharmacological criteria. These new toxins may serve as a lead for clarification of the structural basis for insect vs mammal selectivity of scorpion toxins.  相似文献   

10.
NMR structures of a new toxin from the scorpion Leiurus quinquestriatus hebraeus (Lqh III) have been investigated in conjunction with its pharmacological properties. This toxin is proposed to belong to a new group of scorpion toxins, the alpha-like toxins that target voltage-gated sodium channels with specific properties compared with the classical alpha-scorpion toxins. Electrophysiological analysis showed that Lqh III inhibits a sodium current inactivation in the cockroach axon, but induces in addition a resting depolarization due to a slowly decaying tail current atypical to other alpha-toxin action. Binding studies indicated that radiolabeled Lqh III binds with a high degree of affinity (Ki=2.2 nM) on cockroach sodium channels and that the alpha-toxin from L quinquestriatus hebraeus highly active on insects (LqhalphaIT) and alpha-like toxins compete at low concentration for its receptor binding site, suggesting that the alpha-like toxin receptor site is partially overlapping with the receptor site 3. Conversely, in rat brain, Lqh III competes for binding of the most potent anti-mammal alpha-toxin from Androctonus australis Hector venom (AaH II) only at very high concentration. The NMR structures were used for the scrutiny of the similarities and differences with representative scorpion alpha-toxins targeting the voltage-gated sodium channels of either mammals or insects. Three turn regions involved in the functional binding site of the anti-insect LqhalphaIT toxin reveal significant differences in the Lqh III structure. The electrostatic charge distribution in the Lqh III toxin is also surprisingly different when compared with the anti-mammal alpha-toxin AaH II. Similarities in the electrostatic charge distribution are, however, recognized between alpha-toxins highly active on insects and the alpha-like toxin Lqh III. This affords additional important elements to the definition of the new alpha-like group of scorpion toxins and the mammal versus insect scorpion toxin selectivities.  相似文献   

11.
In the last decade it has become evident that many laboratory manipulations, both genetic and environmental, can lead to significant life extension. All or almost all of the observed life-extension phenotypes are associated with increased resistance and/or ability to respond to environmental stress. These observations show dramatically that life span is not maximized. We suggest that latent within many species-perhaps even humans-is the ability for large increases of life expectancy. The striking correlation between the increased stress resistance of all long-lived mutants in C. elegans and other species and the increased resistance of dietary restricted rodents to environmental toxins is consistent with an evolutionary conservation of a life-span maintenance/environmental stress resistance program. We suggest that it may be possible to develop methods for life extension in mammals, including humans, using relatively straightforward manipulations, such as drug treatments. It should be obvious that these findings have tremendous implications for human society at large, and we suggest that the implications of these findings should be explored.  相似文献   

12.
13.
Radiochemotherapy-resistant blasts commonly cause treatment failure in acute myeloid leukemia (AML), and their resistance is due, in part, to overexpression of multidrug resistance (mdr) proteins. We reasoned that targeted delivery of protein synthesis inactivating toxins to leukemic blasts would reduce the cellular concentrations of relatively short half-life resistance proteins and sensitize the cells to cytotoxic drugs. To test this hypothesis, we employed human granulocyte-macrophage colony-stimulating factor fused to truncated diphtheria toxin (DT388-GMCSF). The human AML cell line HL60 and its vincristine-resistant sublines, HL60Vinc and HL60VCR, were incubated in vitro for 24 h with varying concentrations of toxin. Doxorubicin was added for an additional 24 h, and cell cytotoxicity was assayed by thymidine incorporation and colony formation in semisolid medium. DT388-GMCSF sensitized HL60Vinc and HL60VCR but not HL60 to doxorubicin. Combination indices for three log cell kill varied from 0.2 to 0.3. In contrast, pretreatment with doxorubicin followed by toxins failed to show synergy. At least in the case of the vincristine-resistant cell lines, modulation of drug resistance correlated with reduction in membrane P-glycoprotein concentrations based on immunoblots with C219 antibody, flow cytometry with MRK16 antibody, and cell uptake of doxorubicin. These observations suggest clinical trials of combination therapy may be warranted in patients with refractory AML. Further, targeted toxins may represent a novel class of cell-specific modulators of drug resistance for a number of malignancies.  相似文献   

14.
Exposure and adaptation models provide competing perspectives of the environmental influence on the development of addictive disorders. Exposure theory suggests that the presence of environmental toxins (e.g., casinos) increases the likelihood of related disease (e.g., gambling-related disorders). Adaptation theory proposes that new environmental toxins initially increase adverse reactions; subsequently, symptoms diminish as individuals adapt to such toxins and acquire resistance. The authors describe a new public health regional exposure model (REM) that provides a tool to gather empirical evidence in support of either model. This article demonstrates how the strategic REM, modified to examine gambling exposure, uses standardized indices of exposure to social phenomena at the regional level to quantify social constructs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The kdr and super-kdr point mutations found in the insect sodium channel gene are postulated to confer knockdown resistance (kdr) to pyrethroids. Using an allele-specific PCR assay to detect these mutations in individual horn flies, Haematobia irritans (L.), we determined the allelic frequency of the kdr and super-kdr mutations in several wild and laboratory populations. Wild populations with very similar allelic frequencies had resistance levels that ranged widely from 3- to 18-fold relative to a susceptible population. Conversely, the kdr allele frequency in a lab population with 17-fold resistance was nearly double that found in a heavily pressured wild population with 18-fold resistance. We conclude that, although the kdr mutation confers significant levels of pyrethroid resistance, a substantial component of resistance in insecticidally pressured populations is conferred by mechanisms that are PBO-suppressible. High super-kdr allele frequencies were detected in two resistant lab populations, but in wild populations with equivalent resistance the super-kdr allele frequency was very low. Interestingly, in over 1200 individuals assayed, the super-kdr mutation was never detected in the absence of the kdr mutation.  相似文献   

16.
In a study to solve a mystery of venom toxicity of the joro spider, Nephila clavata, we purified and identified novel spider toxins such as clavamine, spidamine and joramine. Chemical analyses, bioassays and physical analyses were specifically elaborated in these procedures. The structure-activity relationship of the spider toxins was discussed biologically and chemically in comparison with the other spider toxins. We considered that the diversity of the joro spider toxins by reserving 2,4-dihydroxyphenylacetyl-L-asparaginylcadaverine as a common moiety gave rise to an important insight into not only the toxic reaction, but also the ontology.  相似文献   

17.
Drosomycin is the first antifungal protein characterized recently among the broad family of inducible peptides and proteins produced by insects to respond to bacterial or septic injuries. It is a small protein of 44 amino acid residues extracted from Drosophila melanogaster that exhibits a potent activity against filamentous fungi. Its three-dimensional structure in aqueous solution was determined using 1H 2D NMR. This structure, involving an alpha-helix and a twisted three-stranded beta-sheet, is stabilized by three disulfide bridges. The corresponding Cysteine Stabilized alpha beta (CS alpha beta) motif, which was found in other defense proteins such as the antibacterial insect defensin A, short- and long-chain scorpion toxins, as well as in plant thionins and potent antifungal plant defensins, appears as remarkably persistent along evolution.  相似文献   

18.
During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism's pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.  相似文献   

19.
We have found that 1,9-Dideoxyforskolin (DDF) strongly inhibited the cell death induced by ricin, modeccin, Pseudomonas toxin, and diphtheria toxin in MDCK cells, suggesting that these protein toxins have a DDF-sensitive common pathway leading to cell death. However, no significant effect of forskolin on these toxins was observed, implying that cAMP-independent DDF specific mechanism is responsible for the inhibitory effect. The protective effect of DDF against ricin-induced cell death was significantly reversed by the increase in extracellular Ca2+ concentrations. The addition of brefeldin A (BFA) also reversed the protective effect of DDF, while BFA alone slightly increased the cytotoxicity of ricin. The protein synthesis inhibitory activity of modeccin was strongly inhibited by DDF, while only partial inhibition of the activities of ricin and diphtheria toxin was observed. However, the activity of Pseudomonas toxin was enhanced by DDF rather than inhibited. Thus, the process leading to cell death and protein synthesis inhibition by these toxins may be separately affected by DDF, and the protective effect of DDF against toxin-induced cell death is distinct from its effect on protein synthesis inhibition by toxins. Forskolin and DDF slightly increased rather than inhibited the binding and the internalization of ricin to MDCK cells. Despite the strong inhibitory effect of DDF on toxin-induced cell death, DDF did not block toxin-induced DNA fragmentation. These results suggest that DNA fragmentation and cell death may be triggered through separate pathways during apoptosis caused by these toxins, and that a DDF-sensitive specific step may be present in the pathway leading to cell death.  相似文献   

20.
Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号