首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effects of ion irradiation of 3-dimensional arrays of Co nanoparticles were investigated. Arrays were obtained by electron beam deposition of 15 Co/SiO2 bilayers 0.5 and 20 nm thick, respectively. The Co layers consist of Co nanoparticles 3.2 nm in diameter with a standard deviation of 16%. Irradiation was carried out using combinations of 150 kV Ar2+ and 90 kV Ar+ ion bombardments with a Ar+:Ar2+ fluence ratio of 1:4. The effects of ion irradiation were followed by Rutherford backscattering, measurements of hysteresis loops at 5 K and of temperature-dependent field-cooled (FC) and zero-field-cooled (ZFC) measurements of the magnetic susceptibility. A decrease of the peak temperature in the ZFC curve for displacements per atom (DPA) up to 1.1 was observed. Irradiation also induces progressively lower coercivity values. The Co particles showed a remarkable high resistance to ion irradiation, surviving damage up to 33 DPA.  相似文献   

3.
The optical effects of implantation of lithium niobate crystals with 100 keV Ag+ and 8 MeV Au3+ ions with fluences of 1 × 1017 ions/cm2 have been investigated. Metal nanoparticle formation has been studied as a function of annealing temperature, and the resulting optical extinction curves have been simulated by the Mie theory in the small particle limit. Transmission electron microscopy (TEM) has provided direct evidence for the MNP sizes allowing comparison with the calculated results. A TEM study of an X-cut sample implanted with Ag+ ions show that the implanted region is partially amorphised. The differences in the temperature of Au colloid development in X- and Y-cut faces of the lithium niobate crystal are attributed to restoration of crystallinity as a result of annealing.  相似文献   

4.
Charge fractions after scattering of Ne+ ions, Ne0 atoms and Ar+ ions with keV energies under a grazing angle of incidence from an atomically clean and flat Al(1 1 1) surface are studied. For incoming Ne+ ions we observe defined ion fractions in the scattered beams, whereas for incident Ne0 atoms ion fractions are more than one order of magnitude smaller. This experimental result provides clear evidence for a survival of Ne+ ions over the whole scattering event. From the dependence of ion fractions on the perpendicular energy component we derive neutralization rates as function of distance from the surface. These rates compare well with recent theoretical calculations for the system He+–Al(1 1 1). For incident Ar+ ions no survival of ions is found and upper limits for the survival probability and lower limits for the neutralization rate are determined.  相似文献   

5.
The O+ desorption from reduced, oxygenated, and ion-bombarded TiO2(1 1 0) surfaces has been investigated during He+ irradiation. The O+ desorption is initiated by creation of an antibonding O 2s core hole state via quasi-resonant charge exchange with the He+ 1s state, followed by the intra-atomic Auger decay of the O 2s hole. Upon oxygenation of the reduced TiO2(1 1 0) surface, the O+ yield increases by one order of magnitude. The O2 molecule is dissociated at the vacancy site of bridging oxygen and the oxygen atoms either fill a vacancy site or chemisorb at a fivefold-coordinated Ti4+ site as an adatom. The latter is detected with much higher efficiency than the former. The O+ yield is increased during He+ bombardment of the reduced TiO2(1 1 0) surface due to formation of lower coordinated oxygen atoms. The oxygen species thus formed by ion bombardment or oxygenation are unstable on the surface and tend to diffuse into bulk vacancy sites or higher coordination surface sites even at room temperature.  相似文献   

6.
To investigate the nonlinear dose dependence of the thickness of the recrystallized layer during ion beam induced epitaxial recrystallization at amorphous/crystalline interfaces GaAs samples were irradiated with 1.0 MeV Ar+, 1.6 MeV Ar+ or 2.5 MeV Kr+ ions using a dose rate of 1.4 × 1012 cm−2 s−1 at temperatures between 50°C and 180°C. It has been found that the thickness of the recrystallized layer reaches a maximum value at Tmax = 90°C and 135°C for the Ar+ and Kr+ implantations, respectively. This means that the crystallization rate deviates from an Arrhenius dependence due to ion beam induced nucleation and growth within the remaining amorphous layer. The size of the crystallites depends on the implantation dose. This nucleation and growth of the crystallites disturbes and at least blocks the interface movement because the remaining surface layer becomes polycrystalline. Choosing temperatures sufficiently below Tmax the thickness of the recrystallized layer increases linearly with the implantation dose indicating that the irradiation temperature is too low for ion induced nucleation.  相似文献   

7.
The evolution of damages at a Cu/Al2O3 device interface after Ar+ irradiation, depending on alumina structure, and the effect of surface roughness on sputtering have been studied. A polycrystalline Cu/Al2O3 bilayer and polycrystalline Cu on amorphous alumina were irradiated with 400 keV Ar+ ion beam at doses ranging from 5 × 1016 to 1017 Ar+/cm2 at room temperature. The copper layer thicknesses were between 100 and 200 nm. RBS analysis was used to characterize the interface modification and to deduce the sputtering yield of copper. The SEM technique was used to control the surface topography. A RBS computer simulation program was used to reproduce experimental spectra and to follow the concentration profile evolutions of different elements before and after ion irradiation. A modified TRIM calculation program which takes into account the sputtering yield evolution as well as the concentration variation versus dose gives a satisfactory reproduction of the experimental argon distribution. The surface roughness effect on sputtering and the alumina structure influence at the interface on mixing mechanisms are discussed.  相似文献   

8.
Variation of the ion beam induced charge (IBIC) pulse heights due to ion irradiation was investigated on a Si pn diode and a 6H-SiC Schottky diode using a 2 Mev He+ micro-beam. Each diode was irradiated with a focused 2 MeV He+ micro-beam to a fluence in the range of 1×109–1×1013 ions/cm2. Charge pulse heights were analyzed as a function of the irradiation fluence. After a 2 MeV ion irradiation to the Si pn junction diode, the IBIC pulse height decreased by 15% at 9.2×1012 ions/cm2. For the SiC Schottky diode, with a fluence of 6.5×1012 ions/cm2, the IBIC pulse height decreased by 49%. Our results show that the IBIC method is applicable to evaluate irradiation damage of Si and SiC devices and has revealed differences in the radiation hardness of devices dependent on both structural and material.  相似文献   

9.
Conducting polymer polypyrrole thin films doped with LiCF3SO3, [CH3(CH2)3]4NBF4 and [CH3(CH2)3]4NPF6 have been electrodeposited potentiodynamically on ITO coated glass substrate. The polymer films are irradiated with 160 MeV Ni12+ ions at three different fluences of 5 × 1010, 5 × 1011 and 3 × 1012 ions cm−2. An increase in dc conductivity of polypyrrole films from 100 S/cm to 170 S/cm after irradiation with highest fluence is observed in four-probe measurement. X-ray diffractogram shows increase in the crystallinity of the polypyrrole films upon SHI irradiation, which goes on increasing with the increase in fluence. Absorption intensity increase in the higher wavelength region is observed in the UV–Vis spectra. The SEM studies show that the cauliflower like flaky microstructure of the surface of polypyrrole films turns globular upon SHI irradiation at fluence 5 × 1011 ions cm−2 and becomes smooth and dense at the highest fluence used. The cyclic voltammetry studies exhibit that the redox properties of the polypyrrole films do not change much on SHI irradiation.  相似文献   

10.
Au+ ion implantation with fluences from 1 × 1014 to 3 × 1016 cm−2 into 12CaO · 7Al2O3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 1015 cm−2 exhibited photoluminescence (PL) bands peaking at 3.1 and 2.3 eV at 150 K when excited by He–Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au ion having the electronic configuration of 6s2, judged from their similarities to those reported on Au ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (2.3 × 1021 cm−3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au+ implantation if an appropriate fluence is chosen.  相似文献   

11.
Ion beam induced light emission is used to investigate the sputtering yield, SO, of oxygen atoms on the surfaces of a polycrystalline copper and an Al(1 1 1) target. Under Ar+ and Ne+ ion bombardment of Al(1 1 1) and polycrystalline copper targets, spectral lines of Cu I and Al I emitting from sputtered excited atoms are measured as a function of the oxygen partial pressure, wavelength and beam energy. The light emission for two Al I lines (3082 and 3962 Å) and Cu I lines (3247 and 3274 Å) are proportional to the oxygen partial pressure (1×10−4 Torr). Above 2×10−4 Torr, the light intensities start to decrease which is consistent with other measurements. From saturated-oxygen covered target surfaces, light intensities of Al I and Cu I lines are measured as a function of time and oxygen partial pressures. The sputtering yields could be determined from the curves of spectral lines directly. For 10 and 20 keV Ar+ ions bombarding the copper surface, the oxygen sputtering yields are 0.34 and 0.22 (atoms/ion), respectively. The same copper target was bombarded by Ne+ ions at 5 and 10 keV, the oxygen sputtering yields are 0.87 and 0.59, respectively. For 10, 15, and 20 keV Ar+ bombarding an Al(1 1 1) target, the obtained sputtering yields are 0.44, 0.31, and 0.2 (atoms/ion), respectively.  相似文献   

12.
Spinel (MgAl2O4) and yttria stabilized ZrO2 (YSZ) are candidates for fuel materials for use in nuclear reactors and the optical and insulating materials for fusion reactors. In our previous studies, the amorphization of spinel under 60 keV Xe ion irradiation at RT was observed. On the other hand, amorphization could not be confirmed in YSZ single crystals under the same irradiation conditions. In the present study, the damage evolution process of polycrystalline spinel–YSZ composite materials has been studied by in situ TEM observation during ion irradiation. The irradiation was performed with 30 keV Ne+ ions at a flux of 5 × 1013 ions cm−2 s−1 at 923 K and 1473 K, respectively. The observed results revealed a clear difference in morphology of damage depending on irradiation temperature and crystal grains. In the irradiation at 923 K, defect clusters and bubbles were formed homogeneously in YSZ grains. On the other hand, at 1473 K, only bubble formation was observed. The bubbles grew remarkably with increasing ion fluence in both grains. Even though the growth of the bubbles was observed in both grains, the average diameter of grown bubbles in spinel grains was larger than those in YSZ ones. The bubbles tended to form along the grain boundary at both temperatures.  相似文献   

13.
Xe+ ion implantation with 200 keV was completed at room temperature up to a fluence of 1 × 1017 ion/cm2 in yttria-stabilized zirconia (YSZ) single crystals. Optical absorption and X-ray photoelectron spectroscopy (XPS) were used to characterize the changes of optical properties and charge state in the as-implanted and annealed crystals. A broad absorption band centered at 522 or 497 nm was observed in the optical absorption spectra of samples implanted with fluences of 1 × 1016 ion/cm2 and 1 × 1017 ion/cm2, respectively. These two absorption bands both disappeared due to recombination of color centers after annealing at 250 °C. XPS measurements showed two Gaussian components of O1s spectrum assigned to Zr–O and Y–O, respectively, in YSZ single crystals. After ion implantation, these two peaks merged into a single peak with the increasing etching depth. However, this single peak split into two Gaussian components again after annealing at 250 °C. The concentration of Xe decreased drastically after annealing at 900 °C. And the XPS measurement barely detected the Xe. There was no change in the photoluminescence of YSZ single crystals with a fluence of 1 × 1017 ion/cm2 after annealing up to 900 °C.  相似文献   

14.
The damage distributions induced by ultra low energy ion implantation (5 keV Si+) in both strained-Si/Si0.8Ge0.2 and normal Si are measured using high-resolution RBS/channeling with a depth resolution better than 1 nm. Ion implantation was performed at room temperature over the fluence range from 2 × 1013 to 1 × 1015 ions/cm2. Our HRBS results show that the radiation damage induced in the strained Si is slightly larger than that in the normal Si at fluences from 1 × 1014 to 4 × 1014 ions/cm2 while the amorphous width is almost the same in both strained and normal Si.  相似文献   

15.
Pristine C60 films sublimed onto sheet mica were implanted with 20 keV K+ ions and I+ ions at doses of 1.0 × 1016/cm2, 3.0 × 1016/cm2 and 5.0 × 1016/cm2, and with 20 keV Ar+ ions at a dose of 5.0 × 1016/cm2. The distributions of dopants were studied using Rutherford backscattering spectrometry (RBS). The temperature dependence of sheet resistivity of the films was investigated applying a four-probe system. It was proposed that the conductivity enhancement of K+ implanted C60 films was due to the implanted ions in the films, while for I+ implanted C60 films, both implanted I+ ions and irradiation effects of the ions contributed to the enhancement of conductivity.  相似文献   

16.
Single crystals of the ABO3 phases CaTiO3, SrTiO3, BaTiO3, LiNbO3, KNbO3, LiTaO3, and KTaO3 were irradiated by 800 keV Kr+, Xe+, or Ne+ ions over the temperature range from 20 to 1100 K. The critical amorphization temperature, Tc, above which radiation-induced amorphization does not occur varied from approximately 450 K for the titanate compositions to more than 850 K for the tantalates. While the absolute ranking of increasing critical amorphization temperatures could not be explained by any simple physical parameter associated with the ABO3 oxides, within each chemical group defined by the B-site cation (i.e., within the titanates, niobates, and tantalates), Tc tends to increase with increasing mass of the A-site cation. Tc was lower for the Ne+ irradiations as compared to Kr+, but it was approximately the same for the irradiations with Kr+ or Xe+. Thermal recrystallization experiments were performed on the ion-beam-amorphized thin sections in situ in the transmission electron microscope (TEM). In the high vacuum environment of the microscope, the titanates recrystallized epitaxially from the thick areas of the TEM specimens at temperatures of 800–850 K. The niobates and tantalates did not recrystallize epitaxially, but instead, new crystals nucleated and grew in the amorphous region in the temperature range 825–925 K. These new crystallites apparently retain some ‘memory' of the original crystal orientation prior to ion-beam amorphization.  相似文献   

17.
Polycrystalline pellets of the rare-earth sesquioxide Dy2O3 with cubic C-type rare-earth structure were irradiated with 300 keV Kr2+ ions at fluences up to 5 × 1020 Kr/m2 at cryogenic temperature. Irradiation-induced microstructural evolution is characterized using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). In previous work, we found a phase transformation from a cubic, C-type to a monoclinic, B-type (C2/m) rare-earth structure in Dy2O3 during Kr2+ ion irradiation at a fluence of less than 1 × 1020 Kr/m2. In this study, we find that the crystal structure of the top and middle regions of the implanted layer transform to a hexagonal, H-type (P63/mmc) rare-earth structure when the irradiation fluence is increased to 5 × 1020 Kr/m2; the bottom of the implanted layer, on the other hand, remains in a monoclinic phase. The irradiation dose dependence of the C-to-B-to-H phase transformation observed in Dy2O3 appears to be closely related to the temperature and pressure dependence of the phases observed in the phase diagram. These transformations are also accompanied by a decrease in molecular volume (or density increase) of approximately 9% and 8%, respectively, which is an unusual radiation damage behavior.  相似文献   

18.
In the present study, a 500 Å thin Ag film was deposited by thermal evaporation on 5% HF etched Si(1 1 1) substrate at a chamber pressure of 8×10−6 mbar. The films were irradiated with 100 keV Ar+ ions at room temperature (RT) and at elevated temperatures to a fluence of 1×1016 cm−2 at a flux of 5.55×1012 ions/cm2/s. Surface morphology of the Ar ion-irradiated Ag/Si(1 1 1) system was investigated using scanning electron microscopy (SEM). A percolation network pattern was observed when the film was irradiated at 200°C and 400°C. The fractal dimension of the percolated pattern was higher in the sample irradiated at 400°C compared to the one irradiated at 200°C. The percolation network is still observed in the film thermally annealed at 600°C with and without prior ion irradiation. The fractal dimension of the percolated pattern in the sample annealed at 600°C was lower than in the sample post-annealed (irradiated and then annealed) at 600°C. All these observations are explained in terms of self-diffusion of Ag atoms on the Si(1 1 1) substrate, inter-diffusion of Ag and Si and phase formations in Ag and Si due to Ar ion irradiation.  相似文献   

19.
Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm2 up to a fluence of 1 × 1017 ions/cm2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm.

IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu+ solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 × 1015 ions/cm2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm2at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size.  相似文献   


20.
Planar optical waveguides have been formed in Z-cut KTP materials by He+ ion implantation. Guided modes's spectra and refractive index profiles nx, nxy, ny and nz are determined from dark m-lines spectroscopy and by using an IWKB method. The coupling efficiency and light confinement are better with TM (nz) modes than TE ones. This could be explained by the cristallographic axes orientation with respect to the propagation direction. The anisotropy investigation of the waveguide will end this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号